Home
Class 12
MATHS
If alpha+beta=pi/2a n dbeta+gamma=alpha,...

If `alpha+beta=pi/2a n dbeta+gamma=alpha,` then `tanalpha` equals `2(tanbeta+tangamma)` (b) `tanbeta+tangamma` `tanbeta+2tangamma` (d) `2tanbeta+tangamma`

A

`2(tan beta + tan gamma)`

B

`tan beta + tangamma`

C

`tanbeta + 2tan gamma`

D

`2tan beta + tan gamma`

Text Solution

Verified by Experts

The correct Answer is:
c

Given, `alpha+beta=pi//2`
`implies alpha=(pi//2)-beta`
`implies tan alpha = tan (pi//2-beta)`
`implies tan alpha = cot beta`
`implies tan alpha tan beta = 1`
Again, `beta + gamma = alpha " [given]"`
`implies gamma = (alpha - beta)`
`implies tan gamma = tan(alpha - beta)`
`implies tan gamma = (tanalpha-tanbeta)/(1+tanalphatanbeta)`
`implies tan gamma = (tan alpha-tanbeta)/(1+1)`
`therefore 2 tan gamma = tan alpha - tan beta`
`implies tan alpha=tanbeta + 2 tan gamma`
Promotional Banner

Similar Questions

Explore conceptually related problems

Let alpha,betaa n dgamma be some angles in the first quadrant satisfying tan(alpha+beta)=(15)/8a n dcos e cgamma=(17)/8, then which of the following hold(s) good? alpha+beta+gamma=pi cotalpha+tanbeta+tangamma=tanalphatanbetatangamma tanalpha+tanbeta+tangamma=tanalphatanbetatangamma tanalphatanbeta+tanbetatangamma+tangammatanalpha=1

Let alpha=som^(-1)((36)/(85)),beta=cos^(-1)(4/5)a n dgamma=tan^(-1)(8/(15)) then cotalpha+cotbeta+cotgamma=cotalphacotbetacotgamma tanalphatanbeta+tanbetatangamma+tanalphatangamma=1 tanalpha+tanbeta+tangamma=tanalphatanbetatangamma cotalphacotbeta+cotbetacotgamma+cotalphacotgamma=1

If alpha+beta+gamma=2pi, then (a) tan(alpha/2)+tan(beta/2)+tan(gamma/2)=tan(alpha/2)tan(beta/2)tan(gamma/2) (b) tan(alpha/2)tan(beta/2)+tan(beta/2)tan(gamma/2)+tan(gamma/2)tan(alpha/2)=1 (c) tan(alpha/2)+tan(beta/2)+tan(gamma/2)=-tan(alpha/2)tan(beta/2)tan(gamma/2) (d)none of these

If tanbeta = costheta*tanalpha , then tan^2(theta/2) is equal to

If tan(alpha-beta)=(sin2beta,)/(3-cos2beta) then (a) tanalpha=2tanbeta (b) tanbeta=2tanalpha (c) 2tanalpha=3tanbeta (d) 3tanalpha=2tanbeta

If tan beta=2sin alpha sin gamma co sec(alpha+gamma) , then cot alpha,cot beta,cotgamma are in

If alpha,beta,gamma are the roots of a x^3+b x^2+c x+d=0a n d|alpha beta gamma beta gamma alpha gamma alpha beta|=0,alpha!=beta!=gamma then find the equation whose roots are alpha+beta-gamma,beta+gamma-alpha,a n dgamma+alpha-betadot

Prove that tan(alpha-beta)=(tanalpha-tanbeta)/(1+tanalphatanbeta)

Prove that tan(alpha+beta)=(tanalpha+tanbeta)/(1-tanalphatanbeta)

(1+tanalphatanbeta)^2+(tanalpha-tanbeta)^2=