Home
Class 12
MATHS
The domain of the definition of the func...

The domain of the definition of the function
`f(x)=(1)/(4-x^(2))+log_(10)(x^(3)-x)` is

A

`(-1,0) cup (1,2) cup (3 ,infty)`

B

`(-2,-1) cup (-1,0) cup (2,infty)`

C

`(-1,0) cup (1,2) cup (2,infty)`

D

`(1,2) cup (2,infty)`

Text Solution

Verified by Experts

The correct Answer is:
C

Given function `f(x)=(1)/(4-x^(2))+log_(10)(x^(3)-x)`
For domain of of f(x)
`4-x^(2)ne 0 rArr x ne pm 2 " …(i)" `
`and x^(3)-x gt 0`
` rArr x(x-1)(x+1) gt 0`
From Wavy curve method,

` x in (-1,0) cup (1,infty) " ...(ii)" `
From Eqs. (i) and (ii), we get the domain of f(x) as `(-1,0) cup (1,2) cup(2, infty).`
Promotional Banner

Similar Questions

Explore conceptually related problems

Domain of definitation of the function f(X ) = (3)/(4-x^2) + log _(10) (x^3 -x) is

Find the domain of the function : f(x)=3/(4-x^2)+(log)_(10)(x^3-x)

The domain of definition of the function y=(1)/(log_(10)(1-x))+sqrt(x+3) is

The domain of definition of the function y=1/((log)_(10)(1-x))+sqrt(x+2) is

The domain of the function f (x) = (1)/(sqrt(9-x^2)) is

Find the domain of the function: f(x)=(sin^(-1)x)/x

Find the domain of the function : f(x)=sin^(-1)((log)_2x)

Find the domain of the function: f(x)=cos^(-1)(1+3x+2x^2)

Find the domain of the function: f(x)=sin^(-1)(|x-1|-2)

Find the domain of the function : f(x)=1/(sqrt((log)_(1/2)(x^2-7x+13)))