Home
Class 12
MATHS
If p(x)=x^2-3x+2x^3+5 and q(x)=x^2+2x+4,...

If p(x)=x^2-3x+2x^3+5 and q(x)=x^2+2x+4, the find p(x)+q(x).

Text Solution

Verified by Experts

The correct Answer is:
A, D

Since, `(2x-1)/(2x^(3)+3x^(2)+x)gt0`
`rArr ((2x-1))/(x(2x^(2)+3x+1)) gt0`
`rArr((2x-1))/(x(2x+1)(x+1)) gt 0`

Hence, the solution set is,
` x in (-oo,-1) cup (-1//2,0) cup (1//2,oo)`
Hence, (a) and (d) are the correct options.
Promotional Banner

Similar Questions

Explore conceptually related problems

Let P(x) = 4x^(2) - 3x + 2x^(3) + 5 and q(x) = x^(2) + 2x + 4 find p ( x) - q(x) .

If p(x) = 5x^(3) - 3x^(2) + 7x -9 , find (i) p(-1) (ii) p(2)

Find the values of "a" and "b" given that p(x) = (x^2 + 3x+2) (x^2 - 4x+a) g(x) =(x^2 - 6x+9) (x^2 + 4x+b) and their G.C.D. is (x+2) (x-3)

The product of uncommon real roots of the polynomials p(x)=x^4+2x^3-8x^2-6x+15 and q(x) = x^3+4x^2-x-10 is :

By remainder theorem , find the remainder when p(x) is divided by g(x) where , (i) p(x) =x^(3) -2x^2 -4x -1 ,g(x) =x+1 (ii) p(x) =4x^(3) -12x^(2) +14x -3,g(x) =2x-1 (iii) p(x) =x^(3) -3x^(2) +4x +50 ,g(x) =x-3

If p(x)=x^(2)-5x-6 , then find the values of p(1),p(2),p(3),p(0),p(-1),p(-2),p(-3) .

If the quotient obtained on dividing ( 8 x^(4) - 2x^(2) + 6x-7) by ( 2x + 1 ) is ( 4x^(3) + px^(2) - qx + 3 ) , then find p,q and also the remainder.