Home
Class 12
MATHS
If f(x)=sin log((sqrt(4-x^(2)))/(1-x)), ...

If `f(x)=sin log((sqrt(4-x^(2)))/(1-x))`, then the domain of f(x) is ….

Text Solution

Verified by Experts

The correct Answer is:
(-2, 1)

Given, `f(x)=sin log((sqrt(4-x^(2)))/(1-x))`
For domain, `(sqrt(4-x^(2)))/(1-x) gt 0,4-x^(2) gt 0 and 1-x ne 0`
`implies (1-x) gt 0 and 4-x^(2) gt 0`
`implies x lt 1 and |x| lt 2 implies -2 lt x lt 1`
Thus, domain `in (-2,1)`.
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=sin(log)_e{(sqrt(4-x^2))/(1-x)} , then the domain of f(x) is _____ and its range is __________.

If f(x)=sqrt(4-x^2)+sqrt(x^2-1) , then the maximum value of (f(x))^2 is ____________

If f(x)=sqrt(4-x^2)+sqrt(x^2-1) , then the maximum value of (f(x))^2 is ____________

If f(x)=(log)_e((x^2+e)/(x^2+1)) , then the range of f(x)

Find the domain of f(x)=1/(sqrt(x+|x|))

If f(x) = sin^(-1) (sin ("log"_(2) x)) , then find the value of f(300)

The domain of f(x)= (1)/( x^2 +1) is

If f(x)= 3 sqrt((9)/(log_2 (3-2x) - 1) then the value of ' a ' which satisfies f^-1(2 a-4)=1/2 , is

If f(x)=log[(1+x)/(1-x)], then prove that f[(2x)/(1+x^2)]=2f(x)dot

The domain of f(x) = sqrt(16 -x^2 ) is