Home
Class 12
MATHS
The domain of the function f(x)=cos^(-1)...

The domain of the function `f(x)=cos^(-1)("log"_(2)(x^(2))/(2))` is given by…

Text Solution

Verified by Experts

The correct Answer is:
Domain ` in [-2, -1] cup [1,2]`

Given, `f(x)= sin^(-1)("log"_(2)(x^(2))/(2))`
For domain `-1 le "log"_(2)(x^(2))/(2) le 1`
`rArr (1)/(2) le (x^(2))/(2) le 2`
`rArr 1 le x^(2)le 4`
`implies 1 le |x| le 2 `
`implies "Domain " in [-2, -1] cup [1,2] `
Promotional Banner

Similar Questions

Explore conceptually related problems

The domain of the function cos^(-1)(2x-1) is

The domain of the function f(x)=sin^(-1){(log)_2(x^2)/2} is given by__

Find the domain of the function : f(x)=sin^(-1)((log)_2x)

Find the domain of the function: f(x)=cos^(-1)(1+3x+2x^2)

The domain of the function f(x)=(log)_(3+x)(x^2-1) is

Domain of the function f(x)= sin^(- 1)(1+3x+2x^2)

The domain of the function f(x)=sin^(-1)((8(3)^(x-2))/(1-3^(2(x-1)))) is

Find the domain of the function: f(x)=sin^(-1)(|x-1|-2)

The domain of the function f(x) = sqrt( x^2 +1) is

The domain of the function f (x) = (1)/(sqrt(9-x^2)) is