Home
Class 12
MATHS
The value of f(x)=3cos(sqrt ((pi^2)/(16)...

The value of `f(x)=3cos(sqrt ((pi^2)/(16)-x^2))` lie in the interval____

Text Solution

Verified by Experts

The correct Answer is:
`[0, (3)/(sqrt(2))]`

Given, `f(x)=3sin sqrt((pi^(2))/(16)-x^(2))`
` rArr" Domain " in[-(pi)/(4),(pi)/(4)]`
` therefore " For range,"f'(x)=3cos(sqrt((pi^(2))/(16)-x^(2)))*(1(-2x))/(2sqrt((pi^(2))/(16)-x^(2)))=0`
Where, `cos(sqrt((pi^(2))/(16)-x^(2)))=0 or x=0`
`[("neglecting "cos(sqrt((pi^(2))/(16)-x^(2)))=0 rArr (pi^(2))/(16)-x^(2)=(pi^(2))/(4)),(rArr x^(2)= -(3pi^(2))/(16)", never possible")]`
`implies x=0`
Thus, `f(0)=3"sin" (pi)/(4) = (3)/(sqrt(2))`
`and f(-(pi)/(4))=f((pi)/(4))=0`
Hence, range ` in [0,(3)/(sqrt(2))]`
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of f(x)=3sinsqrt(((pi^2)/(16)-x^2)) lie in the interval____

Find the domain of f(x)=sqrt(sinx)+sqrt(16-x^2)

Let f be a differentiable function satisfying int_(0)^(f(x))f^(-1)(t)dt-int_(0)^(x)(cost-f(t)dt=0 and f((pi)/2)=2/(pi) The value of int_(0)^(pi//2) f(x)dx lies in the interval

The domain of f(x) = sqrt(16 -x^2 ) is

Find the range of the function f(x)=3 sin (sqrt((pi^(2))/(16)-x^(2))).

The greatest value of the function f(x)=(sin2x)/(sin(x+pi/4)) on the interval (0,pi/2)i s 1/(sqrt(2)) (b) sqrt(2) (c) 1 (d) -sqrt(2)

The value of lim_(x->pi/4) (sqrt(1-sqrt(sin2x)))/(pi-4x) is

The value of lim_(x->pi/4) (sqrt(1-sqrt(sin2x)))/(pi-4x) is

The maximum value of the function f(x)=sin(x+pi/6)+cos(x+pi/6) in the interval (0,pi/2) occurs at pi/(12) (b) pi/6 (c) pi/4 (d) pi/3

If f(x)=3sqrt(1−x^2)​+3sqrt(1−x^2)​, then f(x) is