Home
Class 12
MATHS
If f(x)= ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ​ 1 2x 3x(x−...

If f(x)= ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ​ 1 2x 3x(x−1) ​ x x(x−1) x(x−1)(x−2) ​ x+1 (x+1)x (x+1)x(x−1) ​ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ​ Then f(100) is equal to

Text Solution

Verified by Experts

The correct Answer is:
1

Since, domain of `f_(1)(x) and f_(2)(x) " are " D_(1) and D_(2)`.
Thus, domain of `[f_(1)(x)+f_(2)(x)]" is " D_(1) cap D_(2).`
Hence, given statement is true.
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)= |1x x+1 2x x(x-1)(x+1) x3 x(x-1) x(x-1)(x-2) (x+1)x(x-1)| then f(500) is equal to 0 b. 1 c. 500 d. -500

if f(x) = (x-1)/(x+1) the f(2x ) is

Let f(x)=sin^(-1)((2x)/(1+x^(2))) and g(x)=cos^(-1)((x^(2)-1)/(x^(2)+1)) . Then tha value of f(10)-g(100) is equal to

f(x)=((x-2)(x-1))/(x-3), forall xgt3 . The minimum value of f(x) is equal to

If f(x)=log_(e)((1-x)/(1+x)),|x| lt 1, " then " f((2x)/(1+x^(2))) is equal to

f(x)=(x)/(x+1), [1,2]

Let f(x+(1)/(x) ) =x^2 +(1)/(x^2) , x ne 0, then f(x) =?

f(x) = sin^(-1)x+x^(2)-3x + (x^(3))/(3),x in[0,1]

If f (x) = (x- 1)/( x+1) x ne 1 Show that f(f(x) ) = (1)/(x) provided x ne 0

Given f(x)=(x^(3)-1)/(x+2) , find i. f'(x) ii. f'(x) at x=1