Home
Class 12
MATHS
If x = a cos θ and y = b sin θ, then b2x...

If x = a cos θ and y = b sin θ, then b2x2 + a2y2 = …………… (1) a2b2 (2) ab (3) a4b4 (4) a2 + b2

Text Solution

Verified by Experts

The correct Answer is:
`t in [-(pi)/(2), -(pi)/(10)]cup [(3pi)/(10),(pi)/(2)]`

Given, `2sint=(1-2x+5x^(2))/(3x^(2)-2x-1),t in [-(pi)/(2),(pi)/(2)]`
Put `2 sint=y rArr -2 le y le 2`
` therefore y=(1-2x+5x^(2))/(3x^(2)-2x-1)`
`rArr (3y-5)x^(2)-2x(y-1)-(y+1)=0`
Since, `x in R -{1, -1//3}`
`["as, "3x^(2)-2x-1 ne 0 rArr (x-1)(x+1//3) ne 0]`
` :. D ge 0`
`rArr 4(y-1)^(2)+4(3y-5)(y+1) ge 0`
`rArr y^(2)-y-1 ge 0`
`rArr (y-(1)/(2))^(2)-(5)/(4) ge 0`
`rArr (y-(1)/(2)-(sqrt(5))/(2))(y-(1)/(2)+(sqrt(5))/(2)) ge 0`
`rArr y le (1-sqrt(5))/(2)`
`or y ge (1+sqrt(5))/(2)`
`rArr 2 sin t le (1-sqrt(5))/(2) `
`or 2 sint ge (1+sqrt(5))/(2)`
`rArr sin t le sin(-(pi)/(10))`
`or sin t ge sin((3pi)/(10))`
`rArr t le -(pi)/(10) or t ge (3pi)/(10)`
Hence, range of t is `[-(pi)/(2), -(pi)/(10)]cup [(3pi)/(10),(pi)/(2)]`.
Promotional Banner

Similar Questions

Explore conceptually related problems

If x = a cosec θ, y = b cot θ, then the value of (x^2/a^2)−(y^2/b^2) = ………………..

If sin theta + cos theta = a, and sin theta = cos theta = b , then A) a^2 + b^2 = 1 B) a^2 - b^2 = 1 C) a^2 + b^2 = 2 D) a^2 - b^2 = 2

If y = A cos 4x + b sin 4x, (d^(2)y)/(dx^(2)) +ky=0 , find k:

Let A B C be a triangle. Let A be the point (1,2),y=x be the perpendicular bisector of A B , and x-2y+1=0 be the angle bisector of /_C . If the equation of B C is given by a x+b y-5=0 , then the value of a+b is (a) 1 (b) 2 (c) 3 (d) 4

(1 + cot2 θ) (1 – cos θ) (1 + cos θ) = …………………. (a) tan2 θ – sec2 θ (b) sin2 θ – cos2 θ (c) sec2 θ – tan2 θ (d) cos2 θ – sin2 θ

Solve: (a - b )x + (a + b)y = a^(2) - 2ab - b^(2) and (a + b) (x + y) = a^(2) + b^(2)

(cos x- cos y) ^(2) + (sin x - sin y) ^(2) =4 sin ^(2) "" ( x-y)/(2)

If y= A cos 4x + Bsin 4x , A and B are constants then show that y_2 + 16y = 0

If y = A cos 4 x + B sin 4 x, A and B are constants then Show that y_2 + 16y =0