Home
Class 12
MATHS
Prove that \(\frac{\sin \theta}{1-\cos \...

Prove that \(\frac{\sin \theta}{1-\cos \theta}\) = cosec θ + cot θ.

Text Solution

Verified by Experts

The correct Answer is:
C

Given, Function `f(x)=x^(2), x in R`
` and g(A)={x in R: f(x) in A}: A subseteq R`
Now, for `S=[0,4]`
`g(S)={x in R: f(x) in S=[0,4]}`
`={x in R: x^(2) in [0,4]}`
`={x in R: x in [-2,2]}`
`rArr g(S)=[-2,2]`
So, `f(g(S))=[0,4]=S`
Now, `f(S)={x^(2): x in S =[0,14]} =[0,16]`
`and g(f(S))={x in R: f(x) in f(S)=[0,16]}`
`={x in R: f(x) in [0,16]}`
`={x in R: x^(2) in [0,16]}`
`={ x in R: x in [-4,4]}=[-4,4]`
From above, it is clear that `g(f(S))=g(S).`
Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: (sin2theta)/(1-cos2theta)=cottheta

Prove that : sqrt((1+cos theta)/(1-costheta))=cosec theta+ cot theta .

sin theta.cosec theta = ……..

Prove that \[\frac{{\cos \theta {\text{ }}}}{{\sec \theta - \tan \theta }} = {\text{ }}1 + \sin \theta \]

Prove that: (sin2theta)/(1+cos2theta)=tantheta

Prove that 1 + ( cot^(2) theta)/(1 + cos ec theta) = cosec theta

Prove that (cot theta -cos theta )/( cot theta +cos theta ) =(cos ec theta -1)/( cosec theta +1)

Prove that (sin theta -cos theta+1 )/( sin theta + cos theta -1) =(1)/( sec theta -tan theta ) [use the identity sec ^(2) theta =1 +tan ^(2) theta ]

Prove: (1 + cot^2 theta) (1 + cos theta)(1-cos theta) = 1

Prove that cot theta-tan theta=2cot 2 theta .