Home
Class 12
MATHS
Let sum(k=1)^(10)f(a+k)=16(2^(10)-1), w...

Let `sum_(k=1)^(10)f(a+k)=16(2^(10)-1),` where the function f satisfies `f(x+y)=f(x)f(y)` for all natural numbers x, y and f(1) = 2. Then, the natural number 'a' is

A

2

B

4

C

3

D

16

Text Solution

Verified by Experts

The correct Answer is:
C

Given, `f(x+y)=f(x)*f(y)`
Let ` f(x)=lambda^(x) " " ["where "lambda gt 0]`
`because f(1)=2 " (given)" `
`therefore lambda =2`
So, `sum_(k=1)^(10)f(a+k)=sum_(k=1)^(10) lambda^(a+k)=lambda^(a)(sum_(k=1)^(10)lambda^(k))`
`=2^(a)[2^(1)+2^(2)+2^(3)+ ... +2^(10)]`
`=2^(a)[(2(2^(10)-1))/(2-1)]`
[by using formula of sum of n-terms of a GP having first term 'a' and common ratio 'r', is
`S_(n)=(a(r^(n)-1))/(r-1)," where " r gt 1]`
` rArr 2^(a+1)(2^(10)-1)=16(2^(10)-1) ("given")`
`rArr 2^(a+1) = 16=2^(4) rArr a+1=4 rArr a=3`
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the natural number a for which sum_(k=1)^nf(a+k)=16(2^n-1), where the function f satisfies the relation f(x+y)=f(x)f(y) for all natural number x , ya n d ,fu r t h e r ,f(1)=2.

The natural number a for which sum_(k=1,n) f(a+k)=16(2^n-1) where the function f satisfies the relation f(x+y)=f(x).f(y) for all natural numbers x,y and further f(1)=2 is:- A) 2 B) 3 C) 1 D) none of these

If a function f satisfies f (f(x))=x+1 for all real values of x and if f(0) = 1/2 then f(1) is equal to

If F :R to R satisfies f(x +y ) =f(x) + f(y) for all x ,y in R and f (1) =7 , then sum_(r=1)^(n) f(R ) is

Determine the function satisfying f^2(x+y)=f^2(x)+f^2(y)AAx ,y in Rdot

If a function satisfies (x-y)f(x+y)-(x+y)f(x-y)=2(x^2 y-y^3) AA x, y in R and f(1)=2 , then

f(x+y)=f(x).f(y) for all x,yinR and f(5)=2,f'(0)=3 then f'(5) is equal to

Let f be a function satisfying of xdot Then f(x y)=(f(x))/y for all positive real numbers xa n dydot If f(30)=20 , then find the value of f(40)dot

A function f: R -> R satisfy the equation f (x)f(y) - f (xy)= x+y for all x, y in R and f(y) > 0 , then

Let f(x) be defined for all x > 0 and be continuous. Let f(x) satisfies f(x/y)=f(x)-f(y) for all x,y and f(e)=1. Then