Home
Class 12
MATHS
For x in R-{0,1}, " let " f(1)(x)=(1)/(x...

For `x in R-{0,1}, " let " f_(1)(x)=(1)/(x), f_(2)(x)=1-x and f_(3)(x)=(1)/(1-x)` be three given functions. If a function, J(x) satisfies `(f_(2) @J@f_(1))(x)=f_(3)(x), " then " J(x)` is equal to

A

`f_(2)(x)`

B

`f_(3)(x)`

C

`f_(1)(x)`

D

`(1)/(x)f_(3)(x)`

Text Solution

Verified by Experts

The correct Answer is:
B

We have,
`f_(1)(x)=(1)/(x), f_(2)(x)=1-x and f_(3)(x)=(1)/(1-x)`
Also, we have `(f_(2)@ J @f_(1))(x)=f_(3)(x)`
`rArr f_(2)((J@f_(1)(x))=f_(3)(x)`
`rArr f_(2)(J(f_(1)(x))=f_(3)(x)`
`rArr 1-J(f_(1)(x))=(1)/(1-x)`
` " "[ because f_(2)(x)=1-x and f_(3)(x)=(1)/(1-x)]`
`rArr 1-J((1)/(x))=(1)/(1-x) " [ because f_(1)(x)=(1)/(x)]`
`rArr J((1)/(x))=1-(1)/(1-x)`
`=(1-x-1)/(1-x)= (-x)/(1-x)`
Now, put `(1)/(x)=X,` then
`J(X)=((1)/(X))/(1-(1)/(X)) " "[ because x=(1)/(X)]`
`=(-1)/(X-1)=(1)/(1-X)`
` rArr J(X)=f_(3)(X) or J(x)=f_(3)(x)`
Promotional Banner

Similar Questions

Explore conceptually related problems

Let 3f(x)-2f((1)/(x))=x the f'(2) is equal to

IF f(x) = ( x+2)/(3x-1) , then f(f(x)) is

If a function f satisfies f (f(x))=x+1 for all real values of x and if f(0) = 1/2 then f(1) is equal to

If a function satisfies (x-y)f(x+y)-(x+y)f(x-y)=2(x^2 y-y^3) AA x, y in R and f(1)=2 , then

The number of integers in the domain of function, satisfying f(x)+f(x^(-1))=(x^3+1)/x ,i s_____

The number of integers in the domain of function, satisfying f(x)+f(x^(-1))=(x^3+1)/x ,i s_____

If the function f(x) satisfies lim_(xrarr1)(f(x)-2)/(x^(2)-1)=pi , evaluate lim_(xrarr1)f(x) .

Let f(x+(1)/(x) ) =x^2 +(1)/(x^2) , x ne 0, then f(x) =?

A function y=f(x) satisfies (x+1)f^(prime)(x)-2(x^2+x)f(x)=(e^x^2)/((x+1)),AAx > -1. If f(0)=5, then f(x) is

Let f be a differentiable function such that f(1) = 2 and f'(x) = f (x) for all x in R . If h(x)=f(f(x)), then h'(1) is equal to