Home
Class 12
MATHS
Let a,b,c in R. " If " f(x) =ax^(2)+bx+c...

Let `a,b,c in R. " If " f(x) =ax^(2)+bx+c` be such that `a+b+c=3 and f(x+y)=f(x)+f(y)+xy, AA x,y in R, " then " sum_(n=1)^(10)f(n)` is equal to

A

330

B

165

C

190

D

255

Text Solution

Verified by Experts

The correct Answer is:
A

We have, `f(x)=ax^(2)+bx+c`
Now, `f(x+y)=f(x) +f(y)+xy`
Put `y=0 rArr f(x) = f(x)+f(0)+0`
`rArr f(0)=0`
`rArr c=0`
Again, put `y= -x`
` therefore f(0)=f(x)+f(-x)-x^(2)`
`rArr 0=ax^(2)+bx+ax^(2)-bx-x^(2)`
`rArr 2ax^(2)-x^(2)=0`
`rArr a=(1)/(2)`
Also, `a+b+c=3`
`rArr (1)/(2) +b+0=3 rArr b=(5)/(2)`
` therefore f(x)=(x^(2)+5x)/(2)`
Now, `f(n)=(n^(2)+5n)/(2)=(1)/(2)n^(2)+(5)/(2)n`
`therefore sum_(n=1)^(10)f(n)=(1)/(2)sum_(n=1)^(10)n^(2)+(5)/(2)sum_(n=1)^(10)n`
`=(1)/(2)*(10xx11xx21)/(6)+(5)/(2)xx(10xx11)/(2)`
`=(385)/(2)+(275)/(2)=(660)/(2)=330`
Promotional Banner

Similar Questions

Explore conceptually related problems

IF f(x+f(y))=f(x)+y AA x, y in R and f(0)=1 , then int_(0)^(10)f(10-x)dx is equal to

If F :R to R satisfies f(x +y ) =f(x) + f(y) for all x ,y in R and f (1) =7 , then sum_(r=1)^(n) f(R ) is

If a function f: R ->R be such that f(x-f(y)) = f(f(y) )+xf(y)+f(x) -1 AA x , y in R then f(2)=

IF f(x) =2x^2 +bx +c and f(0) =3 and f (2) =1, then f(1) is equal to

If f is a function satisfying f (x +y) = f(x) f(y) for all x, y in N such that f(1) = 3 and sum _(x=1)^nf(x)=120 , find the value of n.

If f (x/y)= f(x)/f(y) , AA y, f (y)!=0 and f' (1) = 2 , find f(x) .

Let f be a differentiable function from R to R such that abs(f(x)-f(y))abs(le2)abs(x-y)^(3//2) ,for all x,y inR .If f(0)=1 ,then int_(0)^(1)f^2(x)dx is equal to

Let f(x) = ax^(2) - bx + c^(2), b ne 0 and f(x) ne 0 for all x in R . Then

Let f: R rarr R be a polynomial function satisfying f(f(x) -2 y)=2 x-3 y+f(f(y)-x), forall x, y in R then the value of f(20)-f(14) is equal to