Home
Class 12
MATHS
Iff(x)=sin(logx) then f(xy)+f( y x ​ )...

Iff(x)=sin(logx) then f(xy)+f( y x ​ )−2f(x)cos(logy) is equal to

A

0

B

`(1)/(2)`

C

-2

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
D

Given, `f(x)=cos(logx)`
` therefore f(x)*f(y)-(1)/(2)[f((x)/(y))+f(xy)]`
`=cos(logx)*cos(log y)-(1)/(2) [cos(logx-log y)+cos(logx+log y)]`
`=cos(logx)*cos(log y)-(1)/(2)[(2 cos(logx)*cos(logy)]`
`=cos (logx)*cos(logy)-cos(logx)*cos(logy)=0`
Promotional Banner

Similar Questions

Explore conceptually related problems

If f (x) = cos ( log _e x ) then f(x) . f(y) - (1)/(2) [f(y/x ) + f (xy)] has the value

"If " (d)/(dx)f(x)=f'(x), " then " int(xf'(x)-2f(x))/(sqrt(x^(4)f(x)))dx is equal to

If f(x) = |cos x| + |sin x| , then dy/dx at x = (2pi)/3 is equal to

If f(x,y,z) =xy + yz + zx, then f_(x) - f_(z) is equal to

If f(x)=sin^6x+cos^6x , then range of f(x) is

Let 3f(x)-2f((1)/(x))=x the f'(2) is equal to

If f(x,y) =e^(xy) , then (del^(2)f)/(del x del y) is equal to

If f(x)=lim_(n->oo)n(x^(1/n)-1),t h e nforx >0,y >0,f(x y) is equal to : (a) f(x)f(y) (b) f(x)+f(y) (c) f(x)-f(y) (d) none of these