Home
Class 12
MATHS
If f(x) = sin−1 (2x/1+x^2θ), then f' (√3...

If f(x) = sin−1 (2x/1+x^2θ), then f' (√3) is

Text Solution

Verified by Experts

The correct Answer is:
D

Given, `f(x)=|x-1|`
` therefore f(x^(2))=|x^(2)-1|`
`and {f(x)}^(2)=(x-1)^(2)`
`rArr f(x^(2)) ne (f(x))^(2)`, hence (a) is false.
Also, `f(x+y)=|x+y-1|`
` and f(x)=|x-1|`,
`f(y)=|y-1|`
`rArr f(x+y) ne f(x) +f(y),` hence (b) is false.
`f(|x|)=||x|-1|`
` and |f(x) |=||x-1||=|x-1|`
` therefore f(|x|) ne |f(x)|,` hence (c) is false.
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x) = sin^(-1)(2x/(1+x^(2)) find f (x).

IF f(x) = ( x+2)/(3x-1) , then f(f(x)) is

IF f(x) =2x^2 +bx +c and f(0) =3 and f (2) =1, then f(1) is equal to

Let f(x)=sin^(-1)((2x)/(1+x^(2))) and g(x)=cos^(-1)((x^(2)-1)/(x^(2)+1)) . Then tha value of f(10)-g(100) is equal to

If f(x)=3sqrt(1−x^2)​+3sqrt(1−x^2)​, then f(x) is

if f(x) = (x-1)/(x+1) the f(2x ) is

find the maximum value of f(x) = (sin^(-1) (sin x))^(2) - sin^(-1) (sin x)

f(x)=|x-1|+|x-3| then f'(2) is