Home
Class 12
MATHS
If 2^x+2^y=2x+y, then dydx is...

If 2^x+2^y=2x+y, then dydx is

Text Solution

Verified by Experts

The correct Answer is:
A, B, C

(a) `f(x)=sin[(pi)/(6)sin((pi)/(2)sin x )], x in R`
`=sin((pi)/(6)sin theta), theta in [-(pi)/(2), (pi)/(2)]" where " theta =(pi)/(2) sinx`
`=sin alpha, alpha in [-(pi)/(6),(pi)/(6)], " where " alpha =(pi)/(6) sin theta `
` therefore f(x) in [-(1)/(2),(1)/(2)]`
Hence, range of `f(x) in [-(1)/(2),(1)/(2)]`
So, option (a) is correct.
(b) ` f{g(x)}=f(t), t in [-(pi)/(2),(pi)/(2)] rArr f(t) in [-(1)/(2),(1)/(2)]`
`therefore` Option (b) is correct.
(c) `lim_(x to 0) (f(x))/(g(x))=lim_(x to 0)(sin[(pi)/(6)sin((pi)/(2)sin x )])/((pi)/(2)(sinx))`
`=lim_(x to 0) (sin[(pi)/(6)sin((pi)/(2)sin x )])/((pi)/(6)sin((pi)/(2)sin x ))*((pi)/(6)sin((pi)/(2)sin x ))/(((pi)/(2) sinx))`
`=1 xx (pi)/(6) xx 1 = (pi)/(6)`
` therefore` Option (c) is correct.
(d) ` g{f(x)}=1`
`rArr (pi)/(2) sin {f(x)}=1`
`rArr sin{f(x)} =(2)/(pi) " ...(i)" `
But ` f(x) in [-(1)/(2),(1)/(2)] subset [-(pi)/(6),(pi)/(6)] `
` therefore sin{f(x)} in [-(1)/(2),(1)/(2)] " ...(ii)" `
`rArr sin{f(x)} ne (2)/(pi)," " `[from Eqs. (i) and (ii) ]
i.e. No solution.
` therefore` Option (d) is not correct.
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(2x+3y, 2x-7y)=20x, then f(x,y) equals :

If x ,y in R and x^2+y^2+x y=1, then find the minimum value of x^3y+x y^3+4.

If x^2+y^2=x^2y^2 then find the range of (5x+12 y+7x y)/(x y) .

If sin^(-1)((x^2-y^2)/(x^2+y^2))=loga ,t h e n(dy)/(dx) is equal to x/y (b) y/(x^2) (x^2-y^2)/(x^2+y^2) (d) y/x

If x + y + z = xyz, then prove that (2x)/(1- x^(2)) + (2y)/(1 - y^(2)) + (2z)/(1 - z^(2)) = (2x)/(1 - x^(2))cdot (2y)/(1 - y^(2))cdot (2z)/( 1- z^(2)) .

x+2y=5,2x+y=-2

If u (x,y) =x ^(2) + 2xy-y ^(2) then (del u)/(del x) + (delu)/(del y) is:

The axis of a parabola is along the line y=x and the distance of its vertex and focus from the origin are sqrt(2) and 2sqrt(2) , respectively. If vertex and focus both lie in the first quadrant, then the equation of the parabola is (x+y)^2=(x-y-2) (x-y)^2=(x+y-2) (x-y)^2=4(x+y-2) (x-y)^2=8(x+y-2)

If u=x/y^(2) - y/x^(2) , then

If |y z-x^2z x-y^2x y-z^2x z-y^2x y-z^2y z-x^2x y-z^2y z-x^2z x-y^2|=|r^2u^2u^2u^2r^2u^2u^2u^2r^2| , then r^2=x+y+z b. r^2=x^2+y^2+z^2 cdotu^2=y z+z x+x y d. u^2=x y z