Home
Class 12
MATHS
If y=f(x)=((x+3))/((x-1)),t h e n x=f(y...

If `y=f(x)=((x+3))/((x-1)),t h e n` `x=f(y)` (b) `f(1)=3` `y` increases with `xforx<1` `f` is a rational function of `x`

A

x = f(y)

B

f(1) = 3

C

y increase with x for x lt 1

D

f is a rational function of x

Text Solution

Verified by Experts

The correct Answer is:
A, D

Given, `y=f(x)=(x+2)/(x-1)`
`rArr yx-y=x+2 rArr x(y-1) = y+2`
`rArr x=(y+2)/(y-1) rArr x=f(y)`
Here, f(1) does not exist, so domain ` in R-{1}`
`(dy)/(dx)=((x-1)*1-(x+2)*1)/((x-1)^(2))`
`= -(3)/((x-1)^(2))`
`rArr` f(x) is decreasing for all ` x in R -{1}.`
Also, f is rational function of x.
Hence, (a) and (d) are correct options.
Promotional Banner

Similar Questions

Explore conceptually related problems

If y=f(x)=((x+2))/((x-1)),t h e n (a) x=f(y) (b) f(1)=3 (c) y increases with x for x<1 (d) f is a rational function of x

If f(x)=log((1+x)/(1-x)),t h e n (a) f(x_1)f(x)=f(x_1+x_2) (b) f(x+2)-2f(x+1)+f(x)=0 (c) f(x)+f(x+1)=f(x^2+x) (d) f(x_1)+f(x_2)=f((x_1+x_2)/(1+x_1x_2))

If f: R^+vecR ,f(x)+3xf(1/x)=2(x+1),t h e nfin df(x)dot

If f (x/y)= f(x)/f(y) , AA y, f (y)!=0 and f' (1) = 2 , find f(x) .

If f (x,y) =e ^(2x+3y) find 3f_(x) (0,0) - 2f_(y) (0,0):

If y=1+x+(x^2)/(2!)+(x^3)/(3!)+...+(x^n)/(n !),t h e n(dy)/(dx) is equal to (a) y (b) y+(x^n)/(n !) (c) y-(x^n)/(n !) (d) y-1-(x^n)/(n !)

Given the function f(x)=(a^x+a^(-x))/2(w h e r ea >2)dotT h e nf(x+y)+f(x-y)= (A) 2f(x).f(y) (B) f(x).f(y) (C) f(x)/f(y) (D) none of these

If f(x)=lim_(n->oo)n(x^(1/n)-1),t h e nforx >0,y >0,f(x y) is equal to : (a) f(x)f(y) (b) f(x)+f(y) (c) f(x)-f(y) (d) none of these

If f(x)=(f(x))/y+(f(y))/x holds for all real x and y greater than 0a n df(x) is a differentiable function for all x >0 such that f(e)=1/e ,t h e nfin df(x)dot

If f(2x+3y, 2x-7y)=20x, then f(x,y) equals :