Home
Class 12
MATHS
if f(x)=(a-x^n)^(1/n), where a > 0 an...

if `f(x)=(a-x^n)^(1/n),` where `a > 0 and n` is a positive integer, then `f(f(x))=` (i) `x^3` (ii) `x^2` (iii) `x` (iv) `-x`

Text Solution

Verified by Experts

The correct Answer is:
1

Given, `f(x)=(a-x^(n))^(1//n)`
`rArr f[f(x)]=[a-{(a-x^(n))^(1//n)}^(n)]^(1//n)=(x^(n))^(1//n)=x`
` therefore f[f(x)]=x`
Hence, given statement is true.
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x) =(p-x^n)^(1/n) , p >0 and n is a positive integer then f[f(x)] is equal to

Derivative of f(x)=x^n is nx^(n-1) for any positive integer n.

Find the period of the following. (i) f(x)=(2^(x))/(2^([x])) , where [.] represents the greatest integer function. (ii) f(x)=e^(sinx) (iii) f(x)=sin^(-1)(sin 3x) (iv) f(x) =sqrt(sinx) (v) f(x)=tan((pi)/(2)[x]), where [.] represents greatest integer function.

Let g(x)=1=x-[x] and f(x)={-1, x < 0 , 0, x=0 and 1, x > 0, then for all x, f(g(x)) is equal to (i) x (ii) 1 (iii) f(x) (iv) g(x)

Prove that the function f(x)= x^(n) is continuous at x= n, where n is a positive integer.

Suppose fa n dg are functions having second derivative f'' and g' ' everywhere. If f(x)dotg(x)=1 for all xa n df^(prime)a n dg' are never zero, then (f^('')(x))/(f^(prime)(x))-(g^('')(x))/(g^(prime)(x))e q u a l (a) (-2f^(prime)(x))/f (b) (2g^(prime)(x))/(g(x)) (c) (-f^(prime)(x))/(f(x)) (d) (2f^(prime)(x))/(f(x))

Which of the following function is/are periodic? (a)f(x)={1,xi sr a t ion a l0,xi si r r a t ion a l (b)f(x)={x-[x]; 2n

If f(x)=(x+1)/(x-1)a n dg(x)=1/(x-2),t h e n discuss the continuity of f(x),g(x),a n dfog(x)dot

Let f(x)=tanxa n dg(f(x))=f(x-pi/4), where f(x)a n dg(x) are real valued functions. Prove that f(g(x))="tan ((x+1)/(x+1))dot

If f(x)=lim_(nrarroo) (cos(x)/(sqrtn))^(n) , then the value of lim_(xrarr0) (f(x)-1)/(x) is