Home
Class 12
MATHS
The natural number a for which sum(k=1,n...

The natural number `a` for which `sum_(k=1,n) f(a+k)=16(2^n-1)` where the function f satisfies the relation `f(x+y)=f(x).f(y)` for all natural numbers x,y and further `f(1)=2` is:- A) 2 B) 3 C) 1 D) none of these

Text Solution

Verified by Experts

The correct Answer is:
a=3

Let `f(n)=2^(n)` for all positive integers n.
Now, for `n=1,f(1)=2=2!`
`rArr` It is true for `n=1`.
Again, let f(k) is true.
`rArr f(k)=2^(k)," for some "k in N.`
Again, `f(k+1)=f(k)*f(1) " " `[by definition]
`=2^(k)*2 " " `[from induction assumption]
`=2^(k+1)`
Therefore, the result is true for `n=k+1`. Hence, by principle of mathematical induction.
`f(n)=2^(n), AA n in N`
Now, `sum_(k=1)^(n)f(a+k)=sum_(k=1)^(n)f(a)f(k)=f(a) sum_(k=1)^(n)2^(k)`
`=f(a)*(2(2^(n)-1))/(2-1)`
`=2^(a)*2(2^(n)-1)=a^(a+1) (2^(n)-1)`
But ` sum_(k=1)^(n)f(a+k)=16(2^(n)-1)=2^(4)(2^(n)-1)`
Therefore, `a+1=4 rArr a=3`
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the natural number a for which sum_(k=1)^nf(a+k)=16(2^n-1), where the function f satisfies the relation f(x+y)=f(x)f(y) for all natural number x , ya n d ,fu r t h e r ,f(1)=2.

Let sum_(k=1)^(10)f(a+k)=16(2^(10)-1), where the function f satisfies f(x+y)=f(x)f(y) for all natural numbers x, y and f(1) = 2. Then, the natural number 'a' is

If f (x) satisfies the relation 2 f(x ) + f(1-x) =x^2 for all real x, then f (x) is

Determine the function satisfying f^2(x+y)=f^2(x)+f^2(y)AAx ,y in Rdot

If a function f satisfies f (f(x))=x+1 for all real values of x and if f(0) = 1/2 then f(1) is equal to

If for a function f : R to R f (x +y ) =F(x ) + f(y) for all x and y then f(0) is

y=f(x), where f satisfies the relation f(x+y)=2f(x)+xf(y)+ysqrt(f(x)) , AAx,y->R and f'(0)=0.Then f(6)is equal ______

Let f be a function satisfying of xdot Then f(x y)=(f(x))/y for all positive real numbers xa n dydot If f(30)=20 , then find the value of f(40)dot

If F :R to R satisfies f(x +y ) =f(x) + f(y) for all x ,y in R and f (1) =7 , then sum_(r=1)^(n) f(R ) is

A function f:RtoR is such that f(x+y)=f(x).f(y) for all x.y inR and f(x)ne0 for all x inR . If f'(0)=2 then f'(x) is equal to