Home
Class 12
MATHS
(1 + cot2 θ) (1 – cos θ) (1 + cos θ) = …...

(1 + cot2 θ) (1 – cos θ) (1 + cos θ) = …………………. (a) tan2 θ – sec2 θ (b) sin2 θ – cos2 θ (c) sec2 θ – tan2 θ (d) cos2 θ – sin2 θ

Text Solution

Verified by Experts

The correct Answer is:
`2 le alpha le 14,` No

Let, `y=(alpha x^(2)+6x-8)/(alpha +6x-8x^(2))`
`rArr alpha y + 6xy-8x^(2)y=alpha x^(2)+6x-8`
`rArr -alpha x^(2)-8x^(2)y+6xy-6x+alpha y +8 =0`
`rArr alpha x^(2)+8x^(2)y-6xy+6x-alpha y-8=0`
`rArr x^(2)(alpha +8y)+6x(1-y)-(8+alpha y)=0`
Since, x is real.
`rArr B^(2)-4AC ge 0`
`rArr 36(1-y)^(2)+4(alpha +8y)(8+alpha y) ge 0`
`rArr 9(1-2y+y^(2))+[8alpha +(64 +alpha^(2))y+8alpha y^(2)] ge 0`
`rArr y^(2)(9+8alpha)+y(46+alpha^(2))+9+8alpha ge 0 " ...(i)" `
`rArr A ge 0, D le 0, rArr 9+8alpha gt 0`
`and (46+alpha^(2))^(2)-4(9+8alpha)^(2) le 0`
`rArr alpha gt 9//8`
` and [46 + alpha^(2) -2(9+8alpha)][46 +alpha^(2)+2(9+8alpha)] le 0`
`rArr a gt -9//8`
`and (alpha^(2)-16alpha+28)(alpha^(2)+16alpha+64) le 0`
`rArr alpha gt -9//8`
`and [(alpha -2)(alpha-14)](alpha-8)^(2) le 0`
`rArr alpha gt -9//8`
`and (alpha -2)(alpha -14) le 0 " " [because (alpha +8)^(2) ge 0]`
`rArr alpha gt -9//8`
`and 2 le alpha le 14`
`rArr 2 le alpha le 14`
Thus, `f(x)=(alpha x^(2)+6x-8)/(alpha+6x-8x^(2))` will be onto, if `2 le alpha le 14`
Again, when `alpha =3`
`f(x)=(3x^(2)+6x-8)/(3+6x-8x^(2))`, in this case `f(x)=0`
`rArr 3x^2)+6x-8=0`
`rArr x=(-6pm sqrt(36+96))/(6)=(-6pm sqrt(132))/(6)=(1)/(3)(-3pm sqrt(33))`
This shows that
`f[(1)/(3)(-3+ sqrt(33))]=f[(1)/(3)(-3- sqrt(33))]=0`
Therefore, f is not one-to-one.
Promotional Banner

Similar Questions

Explore conceptually related problems

Prove: sin θ(1 + tan θ) + cos θ(1 + cot θ) = (sec θ + cosec θ) .

Prove that (cosec A - sin A ) (sec A -cos A) = ( 1)/( tan A +cot A)

Prove that sin^2 A cos^2 B+cos^2 A sin^2 B+cos^2 A cos^2 B+sin^2 A sin^2 B=1

Prove that cos (A + B) cos (A - B) = cos^(2) A - sin^(2) B = cos^(2) B- sin^(2) A

If x = a cos θ and y = b sin θ, then b2x2 + a2y2 = …………… (1) a2b2 (2) ab (3) a4b4 (4) a2 + b2

Prove: (cos^2 A + tan^2 A -1)/(sin^2 A ) = tan^2 A

If A + B + C = (pi)/(2) , prove that sin 2A + sin 2B + sin 2C = 4 cos A cos B cos C

Let θ, ϕ ∈ [0, 2] be such that 2cosθ(1 - sinϕ) = sin2θ(tan2θ(tan(θ/2) + cot(θ/2))cosϕ - 1, tan(2π - θ) > 0 and - 1 < sinθ < - √3/2. Then ϕ cannot satisfy

If A + B + C = (pi)/(2) , prove that cos 2A + cos 2B + cos 2C = 1 + 4 sin A sin B cos C

find the values of each of the following : (i) tan^(-1) ""[ 2 cos { 2 sin ^(-1) ""(1/2)}] (ii ) cot [ tan ^(-1) a + cot^(-1) a] (iii ) cos ( sec^(-1) x+ "cosec "^(-1) x), |X| ge 1