Home
Class 12
MATHS
If the tangent to the curve y= (x)/(x^(2...

If the tangent to the curve `y= (x)/(x^(2) - 3), x in r ( xne pm sqrt3)`, at a point `(alpha, beta ) ne (0, 0) ` on it is parallel to the line `2x + 6y -11 =0`, then (A) `|6alpha + 2beta|=19` (B) `|6alpha + 2 beta|=9` (C) `|2 alpha + 6 beta |= 19` (D) `| 2 alpha + 6 beta| = 11`

A

`|6alpha + 2beta|=19`

B

`|6alpha + 2 beta|=9`

C

`|2 alpha + 6 beta |= 19`

D

`| 2 alpha + 6 beta| = 11`

Text Solution

Verified by Experts

The correct Answer is:
A

Equation of given curve is
`y = (x)/(x^(2) - 3), x in R, (x ne pm sqrt3)" " `… (i)
On differentiating Eq. (i) w.r.t x, we get
` (dy)/(dx) = ((x^(2) - 3)- x(2x))/( ( x^(2) - 3)^(2)) = ( (-x^(2) - 3))/((x^(2) - 3)^(2))`
It is given that tangent at a point `( alpha, beta) ne (0, 0)` on it is parallel to the line
`2x + 6y -11 =0`.
` therefore ` Slope of this line = `- (2)/(6)= (dy)/(dx):|_("("alpha, beta")")`
`rArr " " - (alpha ^(2) + 3)/((alpha ^(2)- 3)^(2)) =(1)/(3)`
`rArr 3 alpha ^(2) + 9 = alpha^(4) - 6 alpha ^(2) + 9`
`rArr " " alpha ^(2) - 9 alpha ^(2) = 0`
`rArr " " alpha = 0, -3, 3`
`rArr " " alpha = 3 or -3" " [because alpha ne 0]`
Now, from Eq. (i),
`beta = (alpha )/( alpha ^(2) - 3) rArr beta = (3)/( 9-3) or (-3)/(9-3) = (1)/(2) or - (1)/(2)`
According to the options, `|6alpha + 2 beta| = 19`
at `( alpha, beta)= (pm 3, pm (1)/(2))`
Promotional Banner

Similar Questions

Explore conceptually related problems

If cos alpha + cos beta =0 = sin alpha + sin beta , then cos 2 alpha + cos 2 beta is equal to

If alpha, beta, gamma are the roots of the equation x^3 - 3x + 11 =0 , then alpha + beta + gamma is ………….

If alpha and beta are the roots of the equation 3x^(2) - 6x + 1 = 0 form the equation whose roots are (i) alpha^(2) beta, beta^(2) alpha (ii) 2 alpha + beta, 2beta + alpha

If alpha and beta are the roots of the equation x^(2) -1 =0 " then " (2alpha)/(beta ) + (2 beta)/(alpha) is equal to ..........

If alpha, beta in C are distinct roots of the equation x^2-x+1=0 then alpha^(101)+beta^(107) is equal to

If tan alpha and tan beta are the roots of x^(2) + ax + b = 0, then (sin (alpha + beta))/(sin alpha sin beta) is equal to

If tangent of y^(2)=x at (alpha,beta) , where betagt0 is also a tangent of ellipse x +2y^(2)=1 then value of alpha is

If alpha and beta are the roots of the equation 3x^(2) - 5x + 2 = 0 , find the value of (i) (alpha)/(beta) + (beta)/(alpha) (ii) alpha-beta (iii) (alpha^(2))/(beta) + (beta^(2))/(alpha)

If alpha and beta are roots of the equation x^(2) + 2x + 8 = 0 the the value of (alpha)/(beta) + (beta)/(alpha) is ………….. .