Home
Class 12
MATHS
Consider f(x)=tan^(-1)(sqrt((1+sinx)/(1-...

Consider `f(x)=tan^(-1)(sqrt((1+sinx)/(1-sinx))), x in (0,pi/2)dot` A normal to `y=f(x)` at `x=pi/6` also passes through the point: (1) (0, 0) (2) `(0,(2pi)/3)` (3) `(pi/6,0)` (4) `(pi/4,0)`

A

`(0, 0)`

B

`(0, (2pi)/(3))`

C

`((pi)/(6), 0)`

D

`((pi)/(4), 0)`

Text Solution

Verified by Experts

The correct Answer is:
B

We have, `f(x) = tan ^(-1) sqrt((1 + sin x)/( 1-sin x)),x in (0, (pi)/(2))`
`rArr " " f(x) = tan ^(-1) sqrt(((cos""(x)/(2) + sin ""(x)/(2))^(2)) /(( cos ""(x)/(2) - sin ""(x)/(2))^(2)))`
`" " = tan ^(-1) ((cos""(x)/(2) + sin ""(x)/(2))/(cos ""(x)/(2) - sin ""(x)/(2)))`
`" " ( because cos""(x)/(2) gt sin ""(x)/(2)" for " 0 lt (x)/(2) lt (pi)/(4))`
`" " = tan^(-1) ((1+ tan""(x)/(2))/( 1- tan ""(x)/(2)))`
`= tan ^(-1) [ tan ((pi)/(4) + (x)/(2))] = (pi)/(4) + (x)/(2)`
`rArr f'(x) = (1)/(2) rArr f' ((pi)/(6)) = (1)/(2)`
Now, equation of normal at `x = (pi)/(6)` is given by
`(y - f((pi)/(6)))=-2 (x - (pi)/(6))`
`rArr (y - (pi)/(3)) =- 2 (x - (pi)/(6)) [ because f((pi)/(6)) = (pi)/(4) + (pi)/( 12) = ( 4pi)/(12) = (pi)/(3)] `
which passes through `(0, (2pi)/(3))`.
Promotional Banner

Similar Questions

Explore conceptually related problems

Solve (sqrt(5)-1)/(sinx)+(sqrt(10+2sqrt(5)))/(cosx)=8,x in (0,pi/2)

If y=sqrt((1-cos2x)/(1+cos2x),)x in (0,pi/2)uu(pi/2,pi), then find (dy)/(dx)dot

Find the value of x for which f(x)=sqrt(sinx-cosx) is defined, x in [0,2pi)dot

Prove that: cot^(-1)((sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx)))=x/2,x in (0,pi/4)

Discuss the extremum of f(x)=sinx(1+cosx),x in (0,pi/2)

Solve |sinx+cosx|=|sinx|+|cosx|,x in [0,2pi]dot

If int_(sinx)^(1)t^(2)f(t)dt=1-sinx, xepsilon(0,(pi)/2) then find the value of f(1/(sqrt(3)))

If f(x)={sin^(-1)(sinx),xgt0 (pi)/(2),x=0,then cos^(-1)(cosx),xlt0

The range of f(x)=sin^(-1)(sqrt(x^2+x+1))i s (0,pi/2) (b) (0,pi/3) (c) [pi/3,pi/2] (d) [pi/6,pi/3]

Show that int_(0)^((pi)/(2))(tan^(4)x)/(1+tan^(4)x)dx=(pi)/(4)