Home
Class 12
MATHS
Show that the normal at any point θ to t...

Show that the normal at any point θ to the curve `x = a costheta + a theta sin theta, y = a sintheta – atheta costheta` is at a constant distance from the origin.

A

it makes a constant angle with the X-axis

B

it passes through the origin

C

it is at a constant distance from the origin

D

Name of the above

Text Solution

Verified by Experts

The correct Answer is:
C

Given, `x = a ( cos theta + theta sin theta)`
and `y = a ( sin theta - theta cos theta ) `
` therefore " " (dx)/(d theta) = a (-sin theta + sin theta + theta cos theta) = a theta cos theta `
and `(dy)/( dtheta) = a ( cos theta - cos theta + theta sin theta)`
`" " (dy)/(dtheta) = a theta sin theta rArr (dy)/( d x ) = tan theta `
Thus, equation of normal is
`" " (y - a ( sin theta - theta cos theta) )/( x- a ( cos theta + theta sin theta )) = ( - cos theta )/( sin theta)`
`rArr - x cos theta + a theta sin theta cos theta + a cos ^(2) theta = y sin theta + theta a sin theta - a sin ^(2) theta `
`rArr x cos theta + y sin theta = a`
whose distance from origin is
`" " (|0 + 0 -a|)/( sqrt( cos ^(2) theta + sin ^(2) theta ) ) = a `
Promotional Banner

Similar Questions

Explore conceptually related problems

x = a(costheta + logtan(theta/2), y = asintheta, find dy/dx.

If sintheta +costheta =1 then sin^6 theta +cos^6 theta is:

Prove that (1-costheta +cos2theta )/(sin2theta -sintheta)=cottheta

If x = 2costheta- cos 2theta, y = 2sintheta -sin 2theta, find dy/dx.

Show that the equation of the normal to the curve x=a cos ^(3) theta, y=a sin ^(3) theta at 'theta ' is x cos theta -y sin theta =a cos 2 theta .

Prove that (sintheta +sin2theta)/(1+costheta +cos2theta)=tantheta

Find the slope of the normal to the curve x=a cos^(3) theta,y=a sin^(3) theta at theta=(pi)/(4) .

If x sin ^3 theta +y cos^3 theta = sin theta cos theta and x sin theta =y cos theta then x^2 +y^2 is