Home
Class 12
MATHS
Let f(x)=x/(sqrt(a^2+x^2))-(d-x)/(sqrt(b...

Let `f(x)=x/(sqrt(a^2+x^2))-(d-x)/(sqrt(b^2+(d-x)^2)),x in R,` where a, b and d are non-zero real constants. Then

A

`f` is an increasing function of x

B

`f'` is not a continuous function of x

C

`f` is a decreasing function of x

D

`f` is neither increasing nor decreasing function of x

Text Solution

Verified by Experts

The correct Answer is:
A

We have,
`f(x) = (x) /((a^(2) + x^(2)) ^(1//2)) - ((d - x))/( (b^(2) + (d -x) ^(2))^(1//2)) `
Differentiating above w.r.t. x, we get
`" " (a^(2) + x ^(2) )^(1//2) -x (1)/(2) (2x ) /((a^(2) + x ^(2))^(1//2))/((b^(2) + (d - x^(2))`
` - (b^(2) + (d - x ^(2)) ^(1//2) (-1) - (d - x) (2(d - x)(-1))/( 2 (b ^(2) + (d - x )^(2))^(1//2)))/( (b ^(2) + (d - x )^(2)))`
[by using quotient rule of derivative]
`= (a ^(2) + x ^(2) - x ^(2))/(( a^(2) + x^(2))^(3//2)) + (b ^(2) + (d - x )^(2)- (d - x )^(2))/ ((b^(2) + (d - x) ^(2)) ^(3//2))`
` = (a ^(2))/( (a ^(2) + x^(2)) ^(3//2)) + (b^(2))/(( b^(2) + (d - x )^(2) ) ^( 3//2)) gt 0`,
`AA x in R`
Hence, `f(x)` is an increasing function of x.
Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=sqrt(1+x^(2)) then

The maximum value of the expression |sqrt(sin^2x+2a^2)-sqrt(2a^2-1-cos^2x)| , where aa n dx are real numbers, is sqrt(3) (b) sqrt(2) (c) 1 (d) sqrt(5)

d/(dx)[cos^(-1)(xsqrt(x)-sqrt((1-x)(1-x^2)))]= 1/(sqrt(1-x^2))-1/(2sqrt(x-x^2)) (-1)/(sqrt(1-x^2))-1/(2sqrt(x-x^2)) 1/(sqrt(1-x^2))+1/(2sqrt(x-x^2)) 1/(sqrt(1-x^2)) 0 b. 1//4 c. -1//4 d. none of these

If y=(sqrt(a+x)-sqrt(a-x))/(sqrt(a+x)+sqrt(a-x)) ,then (dy)/(dx) is equal to (a) (a y)/(xsqrt(a^2-x^2)) (b) (a y)/(sqrt(a^2-x^2)) (c) (a y)/(xsqrt(a^2-x^2)) (d) none of these

If f(x)=2sin^(-1)sqrt(1-x)+sin^(-1)(2sqrt(x(1-x))) , where x in (0,1/2),t h e nf^(prime)(x) is (a) 2/(sqrt(x(1-x))) (b) zero (c) -2/(sqrt(x(1-x))) (d) pi

If b^2<2a c , then prove that a x^3+b x^2+c x+d=0 has exactly one real root.

Number of points where function f(x) defined as f:[0,2]pivecR ,f(x)={3-|cos x-1/(sqrt(2))|,|sinx<1/(sqrt(2))|2+|cos x+1/(sqrt(2))|,|s in x|geq1/(sqrt(2)) is non-differentiable is a. 2 b. 4 c. 6 d. 0

The domain of the function f(x)=sqrt(x^2-[x]^2) , where [x] is the greatest integer less than or equal to x , is (a) R (b) [0,+oo) (c) (-oo,0) (d) none of these

If a ,b ,c ,d in R , then the equation (x^2+a x-3b)(x^2-c x+b)(x^2-dx+2b)=0 has a. 6 real roots b. at least 2 real roots c. 4 real roots d. none of these