Home
Class 12
MATHS
For all x in (0,1) (a)e^x<1+x (b) (...

For all `x in (0,1)`
(a)`e^x<1+x`
(b) `(log)_e (x+1) < x`
(c)`sinx>x`
(d) `(log)_e x > x`

A

`e^(x) lt 1+x`

B

`log_e (1+x) lt x `

C

`sin x gt x `

D

`log_(epsi) x gt x `

Text Solution

Verified by Experts

The correct Answer is:
C

Option (a) Let `f(x) = e^(x) - 1 - x `
then ` f '(x) = e ^(x) - 1 gt 0, AA x in (0, 1)`
`rArr f(x) ` increase in `(0, 1)`
`rArr f(x) gt f(0) ` for ` 0 lt x lt 1 `
`rArr e^(x) - 1 - x gt 0 or e ^(x) gt 1 + x ` for ` 0 lt x lt 1 `
Option (b) Let `g(x) = log_e (1 + x) - x , 0 lt x lt 1 `
`g ' (x) = (1)/( 1+ x) - 1 = - (x) /( 1 + x ) lt 0 `for ` 0 lt x lt 1 `
`rArr g (x)` decreases for ` 0 lt x lt 1 `
`rArr g (x) lt g(0) ` for ` 0 lt x lt 1 `
`rArr log _e ( 1 + x) - x lt 0` for ` 0 lt x lt 1 `
or `log _e (1 + x ) lt x ` for ` 0 lt x lt 1 `
Therefore, Option (b) is the answer.
Option `sin x gt x `
Let `h(x) = sin x - x `
` h'(x) = cos x - 1 `
For ` x in (0, 1), cos x - 1 lt 0`
`rArr h (x) ` is decreasing function.
`rArr " " h (x) lt h (0)`
`rArr " " sin x - x lt 0`
`rArr sin x lt ` which is not true.
Option (d) `p (x) = log x - x `
`p' (x) = (1)/(x) - 1 gt 0, AA x in (0, 1)`
Therefore, `p'(x)` is an increasing function.
`rArr p (0) lt p (x) lt p (1)`
`rArr -oo lt logx - x lt - 1 `
`rArr log x - x lt 0`
`rArr log x lt x `
Therefore, option (d) is not the answer.
Promotional Banner

Similar Questions

Explore conceptually related problems

The differential coefficient of f((log)_e x) with respect to x , where f(x)=(log)_e x , is (a) x/((log)_e x) (b) 1/x(log)_e x (c) 1/(x(log)_e x) (d) none of these

e ^(x log a)e^(x)

A value of C for which the conclusion of Mean Value Theorem holds for the function f(x)""=""(log)_e x on the interval [1, 3] is (1) 2(log)_3e (2) 1/2""(log)_e3 (3) (log)_3e (4) (log)_e3

If (dy)/(dx)-y log_(e) 2 = 2^(sin x)(cos x -1) log_(e) 2 , then y =

Find the range of f(x)=(log)_e x-((log)_e x)^2/(|(log)_e x|)

Let f: R->R and g: R->R be two non-constant differentiable functions. If f^(prime)(x)=(e^((f(x)-g(x))))g^(prime)(x) for all x in R , and f(1)=g(2)=1 , then which of the following statement(s) is (are) TRUE? f(2) 1-(log)_e2 (c) g(1)>1-(log)_e2 (d) g(1)<1-(log)_e2

Evaluate : ("lim")_(xvec1)(x^2+x(log)_e x-(log)_e x-1)/((x^2-1)

f(x)=|x log_e x| monotonically decreases in (a) (0,1/e) (b) (1/e ,1) (c) (1,oo) (d) (1/e ,oo)

Evaluate int(1+x^(2)log_(e)x)/(x+x^(2)log_(e)x)dx