Home
Class 12
MATHS
The function f(x) = sin ^(4)x+ cos ^(4)x...

The function `f(x) = sin ^(4)x+ cos ^(4)x ` increases, if (A) `0 lt x lt (pi)/(8)` (B) `(pi)/(4) lt x lt (3pi)/(8)` (C) `( 3pi)/(8) lt x lt (5pi)/(8)` (D) `( 5pi)/(8) lt x lt(3pi)/(4)`

A

`0 lt x lt (pi)/(8)`

B

`(pi)/(4) lt x lt (3pi)/(8)`

C

`( 3pi)/(8) lt x lt (5pi)/(8)`

D

`( 5pi)/(8) lt x lt(3pi)/(4)`

Text Solution

Verified by Experts

The correct Answer is:
B

Given, `f (x) = sin ^(4)x + cos ^(4) x `
On differentiating w.r.t. x, we get
`f ' (x) = 4 sin ^(3) x cos x - 4 cos ^(3) x sinx `
`" " = 4 sin x cos x (sin ^(3)x - cos ^(2)x )`
` " " = 2 sin 2x (-cos 2 x)`
`" " = - sin 4x `
Now, `f ' (x) gt 0, if sin 4x lt 0`
`rArr " " pi lt 4x lt 2pi`
`rArr (pi)/(4) lt x lt (pi)/(2) " " ` ... (i)
`rArr ` Option (a) is not proper subset of Eq. (i), so it is not correct.
Now, ` " " (pi)/(4) lt x lt ( 3pi) /(8)`
Since, option (b) is the proper subset of Eq. (i), so it is correct.
Promotional Banner

Similar Questions

Explore conceptually related problems

IF 0 lt x lt (pi)/(2) then tan (pi/4 +x) + tan "(pi/4-x) is equal to

Find cos (x - y), given that cos x = - (4)/(5) with pi lt x lt (3pi)/(2) and sin y = - (24)/(25) with pi lt y lt (3pi)/(2) .

Find sin (x - y) given that sin x = (8)/(17) with 0 lt x lt (pi)/(2) and cos y = - (24)/(25) with pi lt y lt (3pi)/(2) .

Find the values of cos x and tan x if sin x = - (3)/(5) and pi lt x lt (3pi)/(2) .

If sin x = (15)/(17) and cos y = (12)/(13),0 lt x lt (pi)/(2) , 0 lt y lt (pi)/(2) , find the values of tan(x + y)

If sin A = (3)/(5) and cos B = (9)/(41) , 0 lt A lt (pi)/(2), 0 lt B lt (pi)/(2) Find the value of sin (A + B)

Expand tan x in ascending power of x upto 5^(th) power for (-pi)/(2) lt x lt (pi)/(2)

Find (dy)/(dx), " if "y=12 (1-cos t), x= 10(t-sin t), -(pi)/(2) lt t lt (pi)/(2) .

If sin x = (15)/(17) and cos y = (12)/(13),0 lt x lt (pi)/(2) , 0 lt y lt (pi)/(2) , find the values of sin (x + y)