Home
Class 12
MATHS
If f(x)=x/(sinx)a n dg(x)=x/(tanx),w h e...

If `f(x)=x/(sinx)a n dg(x)=x/(tanx),w h e r e0

A

both `f(x) and g(x)` are increasing functions

B

both `f(x) and g(x)` are decreasing functions

C

`f(x)` is and increasing function

D

`g(x)` is an increasing fuction

Text Solution

Verified by Experts

The correct Answer is:
B

Given, `g(x) = (x) /( tan x ), ` where ` 0 lt x le 1 `
Now, ` g(x)` is continuous in ` [ 0, 1 ]` and differentiable in `]0, 1]`.
For `" " 0 lt x lt 1 `
`" " g' (x) = (tanx - x sec ^(2) x )/( tan ^(2) x)`
Again, ` H (x) = tan x - x sec ^(2) x, 0 le x le 1 `
Now, `H (x) ` is continuous in `[0, 1]` and differentiable in `]0, 1[`.
For `0 lt x lt 1, H (x) = tan x - x sec^(2) x, 0 le x le 1 `
`rArr " "H ' (x) = sec^(2) x - sec^(2) x - 2 x sec ^(2)x tan x `
`" " = - 2x sec ^(2)x tanx lt 0`
Hence, ` H (x) ` is decreasing function in `[ 0, 1]`.
Thus, `H (x) lt H (0) ` for ` 0 lt x lt 1 `
`rArr " " H (x) lt 0 ` for ` 0 lt x lt 1 `
`rArr " " g ' (x) lt 0 ` for ` 0 lt x lt 1 `
`rArr g(x)` is decreasing function in (0, 1].
Therefore, `g(x) = (x)/( tan x ) ` is a decreasing function in `0 lt x le 1 `.
Also, `" " g(x) lt g(0)` for ` 0 lt x le 1 `
`rArr " " (x) /(tan x ) lt 1 ` for ` 0 lt x le 1 `
`rArr " " x lt tan x ` for ` 0 lt x le 1 `
Now, let ` f (x) = {{:(x//sin x ,,"for",,0 lt x le 1 ),(1,,"for",, x=0):}`
Now, `f ` is continouous in `[0, 1]` differentiating in `]0, 1[`.
For `0 lt x lt1`,
`f' (x) = ( sin x - x cos x ) /( sin ^(2) x ) = ((tan x - x) cos x ) /( sin ^(2) x) gt 0 "for " 0 lt x lt 1 `
`rArr f(x) `increases in ` [0, 1]`
Thus, `f (x) = (x)/(sin x )` increases in `0 lt x le 1 `.
Therefore, option (c) is the answer.
Promotional Banner

Similar Questions

Explore conceptually related problems

Discuss monotonocity of f(x)=x/(sinx)a n d g(x)= x / (tanx), w h e r e

If f(x)=(x+1)/(x-1)a n dg(x)=1/(x-2),t h e n discuss the continuity of f(x),g(x),a n dfog(x)dot

If f(x)=|x-2|a n dg(x)=f[f(x)],t h e ng^(prime)(x)= ______ for x>2

Suppose f(x)=a x+ba n dg(x)=b x+a ,w h e r eaa n db are positive integers. If f(g(20))-g(f(20))=28 , then which of the following is not true? a=15 b. a=6 c. b=14 d. b=3

Prove that the curves y=f(x),[f(x)>0],a n dy=f(x)sinx ,w h e r ef(x) is differentiable function, have common tangents at common points.

Which of the following functions are identical? f(x)=1nx^2a n dg(x)=21nx f(x)=(log)_x ea n dg(x)=1/((log)_e x) f(x)="sin"(cos^(-1)x)a n dg(x)="cos"(sin^(-1)x) non eoft h e s e

If d is the minimum distance between the curves f(x)=e^x a n dg(x)=(log)_e x , then the value of d^6 is

Which of the following pairs of functions is/are identical? (a) f(x)="tan"(tan^(-1)x)a n dg(x)="cot"(cot^(-1)x) (b) f(x)=sgn(x)a n dg(x)=sgn(sgn(x)) (c) f(x)=cot^2xdotcos^2xa n dg(x)=cot^2x-cos^2x (d) f(x)=e^(lnsec^(-1)x)a n dg(x)=sec^(-1)x

Iff(x)=e^(g(x))a n dg(x)=int_2^x(tdt)/(1+t^4), then find the value of f^(prime)(2)

If the function f(x)=-4e^((1-x)/2)+1+x+(x^2)/2+(x^3)/3a n dg(x)=f^(-1)(x), then the reciprocal of g^(prime)((-7)/6) is_________