Home
Class 12
MATHS
Let f:(0,oo)toR be given by f(x)=int(1//...

Let `f:(0,oo)toR` be given by `f(x)=int_(1//x)^(x)e^(-(t+1/t))(dt)/t`, then

A

`f(x)` is monotonically increasing on `[1, oo)`

B

`f(x)` is monotocially decreasing on `[0, 1)`

C

`f(x) + f((1)/(x))= 0, AA x in (0, oo)`

D

`f(2^(x))` is an odd function of `x` on R

Text Solution

Verified by Experts

The correct Answer is:
A, C

Given, `f(x) = int_((1)/(x))^(x) ( e ^(-(t +(1)/(t)))) /( t ) dt `
`f' (x) = 1 * ( e^(- (x + (1) /(x)))) /( x ) - ((-1)/(x^(2))) (e ^(-((1)/(x) + x)))/( 1//x)`
`" " = ( e ^(-(x + (1)(x))))/(x) + (e ^(- (x + (1)/(x))))/(x) = ( 2e ^(- (x+ (1)/(x))))/( x)`
As `f ' (x) gt 0 , AA x in ( 0, oo)`
`rArr ` Option (a) is correct and option (b) is wrong.
Now, `f(x) + f((1)/(x)) = int_((1)/(x)) ^(x) (e^(- (t + (1)/(t))))/(t) dt + int _(x) ^(1//x) (e ^(- (t + (1)/(t))))/(t) dt `
Now, let ` g(x) = f (2 ^(x)) = int_(2 ^(-x))^(2 ^(x)) (e^(-(t + (1)/(t))))/( t) dt `
`" " g(-x) = f(2^(-x)) = int_(2^(x)) ^(2^(-x)) (e ^(-(t + (1)/(t))))/( t) dt = - g (x)`
` therefore f(2 ^(x))` is an odd function.
Promotional Banner

Similar Questions

Explore conceptually related problems

Let f:(0,oo) in R be given f(x)=overset(x)underset(1//x)int e^-(t+(1)/(t))(1)/(t)dt , then

If f(x) = int_(0)^(x) t cos t dt , then (df)/(dx)

Let f(x)=int_(2)^(x)f(t^(2)-3t+4)dt . Then

If f(x)=int_(2)^(x)(dt)/(1+t^(4)) , then

Let f(x)=int_(1)^(x)(3^(t))/(1+t^(2))dt , where xgt0 , Then

If f(x)=int_(0)^(x)t sintdt , then f'(x)= . . . . . .

If f(x)=int_(0)^(x)|t-1|dt , where 0lexle2 , then

If f' is a differentiable function satisfying f(x)=int_(0)^(x)sqrt(1-f^(2)(t))dt+1/2 then the value of f(pi) is equal to

If int_(0)^(x) f(t)dt=x^2+int_(x)^(1) t^2f(t)dt , then f'(1/2) is

Let f:[1,oo)->R and f(x)=x(int_1^xe^t/tdt)-e^x .Then (a) f(x) is an increasing function (b) lim_(x->oo)f(x)->oo (c) fprime(x) has a maxima at x=e (d) f(x) is a decreasing function