Home
Class 12
MATHS
Let f(x)=5-|x-2| and g(x)=|x+1|, x in R....

Let `f(x)=5-|x-2| and g(x)=|x+1|, x in R`. If f(x)n attains maximum value at `alpha` and g(x) attains minimum value of `beta`, then `lim_(xto-alpha beta) ((x-1)(x^(2)-5x+6))/(x^(2)-6x+8)` is equal to

A

`1//2`

B

`-3//2`

C

`-1//2`

D

`3//2`

Text Solution

Verified by Experts

The correct Answer is:
A

Given function are f(x)=-5-|x-2|
and g(x) |x+1|, where `x in R`.
Clearly, maximum of f(x) occurred at `x=2, so alpha, 2`. And minimum of g(x) occurred at `x=- 1, so beta=-1`
`rArr alpha beta=-2`
Now, `underset(x to- alpha beta) lim ((x-1)(x^(2)-5x+6))/(x^(2)-6x+8)`
`underset(x to-2) lim ((x-1)(x-3)(x-2))/((x-4)(x-2))" " [ :. alpha beta =-2]`
`underset(x to-2) lim ((x-1)(x-3))/((x-4))=((2-1)(2-3))/((2-4))=(1xx(-1))/((-2))=(1)/(2)`
Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate lim_(xto-1)(x^(2)-5x+6)/(x-1)

Find lim_(xto-2)(x^(2)+5x+6)/(x^(2)+3x+2)

The value of lim_(xto 0)(log(1+2x))/(x) is equal to

Let f(x)={x+1,x >0 2-x ,xlt=0 and g(x)={x+3,x 0)g(f(x)).

Let f(x)=(alpha x)/(x+1), x ne -1. Then, for what value of alpha " is " f[f(x)]=x ?

Let f(x) be defined as f(x)={tan^(-1)alpha-5x^2,0ltxlt1 and -6x ,xgeq1 if f(x) has a maximum at x=1, then find the values of alpha .

If alpha and beta are the roots of x^(2)+6x-4=0 , find the value of (alpha-beta)^(2) .

If alpha and beta are the roots of x^(2)+6x-4=0 , find the values of (alpha-beta)^(2) .

If alpha and beta be the roots of equation x^(2) + 3x + 1 = 0 then the value of ((alpha)/(1 + beta))^(2) + ((beta)/(1 + alpha))^(2) is equal to