Home
Class 12
MATHS
The maximum value of the function f(x)=3...

The maximum value of the function `f(x)=3x^3-18x^2+27x-40" on the set " S={x in R: x^2+30 le 11x}` is

A

122

B

`-122`

C

`-222`

D

222

Text Solution

Verified by Experts

The correct Answer is:
A

We have,
`f(x)=3x^(3)-18x^(2)+27x-40`
`rArr f'(x)=9x^(2)-36x+27`
`=9(x^(2)-4x+3)=9(x-1)(x-3)" " ....(i)`
Also, we have `S={x in R:x^(2)+30 le11x}`
Clearly, `x^(2)+30 le 11x`
`rArr x^(2)-11+30 le0`
`rArr (x-5)(x-6)le 0 rArr x in [5,6]`
So, S=[5,6]
Not that f(x) inscreasing in [5,6]
`[ :. f'(x) le 0 "for" x in [5,6]`
`:. f((6)` is maximum, where
`f(6)=3(6)^(3)-18(6)^(2)+27-40=122`
Promotional Banner

Similar Questions

Explore conceptually related problems

The maximum value of the function f(x)=2x^3-15 x^2+36 x-48 on the set A={x|x^ 2+20lt=9x} is______.

If x satisfies the condition f(x)={x:x^2+3 0le11x} then maximum value of function f(x)=3x^3-18x^2-27x-40 is equal to (A) -122 (B) 122 (C) 222 (D) -222

Find the absolute maximum and absolute minimum values of the function f(x) = 2x^(3) - 3x^(2) + 2 "in " -(1)/(2) le x le 4

Find the absolute maximum and absolute minimum values of the function f(x)=2x^(3)+3x^(2)-12x on [-3, 2]

Verify mean value theorem for the function f(x) = x^(3) - 5x^(2) _ 2x in [1, 3]

Solve the equation 2x^3+11x^2-9x- 18 =0

The complete set of values of a for which the function f(x)=tan^(-1)(x^(2)-18x +a)gt 0 AA x in R is

Find the range of the function f(x) = [ 2 x ] , 1/3 le x le (8)/(3)

Find the absolute maximum value and the absolute minimum value of the functions in the given intervals: f(x) = (x-1)^(2) +3, x in [-3 ,1)

Discuss the differentiability of the functions: f(x) {{:(2x-3",", 0 le x le 2 "at" "x =2" ),(x^2 -3",", x gt 2"):}