Home
Class 12
MATHS
Let f(x)=x^2+(1/x^2) and g(x)=x-1/x x i...

Let `f(x)=x^2+(1/x^2)` and `g(x)=x-1/x` `x in R-{-1,0,1}`. If `h(x)=(f(x)/g(x))` then the local minimum value of `h(x)` is: (1) 3 (2) `-3` (3) `-2sqrt(2)` (4) `2sqrt(2)`

A

3

B

`-3`

C

`-2sqrt(2)`

D

`2sqrt(2)`

Text Solution

Verified by Experts

The correct Answer is:
D

We have ,
`f(x)=x^(2)+(1)/(x^(2))andg(x) =x-(1)/(x) rArr h(x)=(f(x))/(g(x))`
`:. h(x)=(x^(2)+(1)/(x^(2)))/(x-(1)/(x))=((x-(1)/(x))^(2)+2)/(x-(1)/(x))`
`rArr h(x)=(x-(1)/(x))+(2)/(x-(1)/(2))`
`x-(1)/(x)gt0, (x-(1)/(x))+(2)/(x-(1)/(x))in [ 2 sqrt(2),oo]`
`x-(1)/(x)lt0, (x-(1)/(x))+(2)/(x-(1)/(x))in [oo, 2sqrt(2)]`
`:.` Local minimum value is `2sqrt(2)`
Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=sqrt(1+x^(2)) then

f(x)=((x-2)(x-1))/(x-3), forall xgt3 . The minimum value of f(x) is equal to

If f(x)=sqrt(4-x^2)+sqrt(x^2-1) , then the maximum value of (f(x))^2 is ____________

If f(x)=sqrt(4-x^2)+sqrt(x^2-1) , then the maximum value of (f(x))^2 is ____________

If (x^2+x−2)/(x+3) 1) f(x) then find the value of lim_(x->1) f(x)

Let f(x)=(alphax)/((x+1)),x!=-1. The for what value of alpha is f(f(x))=x (a) sqrt(2) (b) -sqrt(2) (c) 1 (d) -1

If f(x)=(a^x)/(a^x+sqrt(a ,)),(a >0), then find the value of g(n)= sum_(r=1)^(2n-1)2f(r/(2n)) g(4)

The function f(x)=x/2+2/x has a local minimum at x=2 (b) x=-2 x=0 (d) x=1