Home
Class 12
MATHS
Let f,g and h be real-valued functions d...

Let `f,g` and `h` be real-valued functions defined on the interval `[0,1]` by `f(x)=e^(x^2)+e^(-x^2)` , `g(x)=x e^(x^2)+e^(-x^2)` and `h(x)=x^2 e^(x^2)+e^(-x^2)`. if `a,b` and `c` denote respectively, the absolute maximum of `f,g` and `h` on `[0,1]` then

A

`a=b and c ne b`

B

`a=c and a ne b`

C

`a ne b and c ne b`

D

`a=b=c`

Text Solution

Verified by Experts

The correct Answer is:
D

Given function, `f(x)=x^(x^(2))+e^(-x^(2)),g(x)=xe^(x^(2))+e^(-x^(2)) and h(x)=x^(2)e^(x^(2))+e-x^(2)` are stricctly increasing on [0,1].
Hence, at x=1,
the given function, attains absolute maximum all equal to e+1/e.
`rArr a=b=c`
Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=(e^(x))/(1+x^(2)) and g(x)=f'(x) , then

If int f' (x) e^(x^(2)) dx = (x-1)e^(x^(2)) + c , then f (x) is

If int f'(x) e^(x^(2))dx = (x-1)e^(x^(2))+c then f (x) is . . . . .

Let f(x)=int(dx)/(e^(x)+8e^(-x)+4e^(-3x)),g(x)=int(dx)/(e^(3x)+8e^(x)+4e^(-x)). int(f(x)-2g(x))dx

Let f(x)=int(dx)/(e^(x)+8e^(-x)+4e^(-3x)),g(x)=int(dx)/(e^(3x)+8e^(x)+4e^(-x)). int(f(x)-2g(x))dx

Find the inverse of the function: f:(-oo,1] rarr [1/2,oo],w h e r ef(x)=2^(x(x-2))

If f:[0,oo[vecR is the function defined by f(x)=(e^x^2-e^-x^2)/(e^x^2+e^-x^2), then check whether f(x) is injective or not.

If intsinx d(secx)=f(x)-g(x)+c ,t h e n f(x)=secx (b) f(x)=tanx g(x)=2x (d) g(x)=x

Find intervals of concavity and points of inflexion for the following functions: f(x)=1/2(e^(x)-e^(-x))