Home
Class 12
MATHS
If f(x)={{:(x",",0lexle1),(2-e^(x-1)",",...

If `f(x)={{:(x",",0lexle1),(2-e^(x-1)",",1ltxle2),(x-e",",2ltxle3):}` and `g'(x)=f(x), x in [1,3]`, then```

A

`g(x)` has local maximum at ` x = 1 + log _e 2 ` and local minima at ` x = e `

B

` f(x) ` has local maxima at ` x =1 ` and local minima at ` x = 2 `

C

`g(x) ` has no local minima

D

`f(x) ` has no local maxima

Text Solution

Verified by Experts

The correct Answer is:
A, B

Given,
`" " f(x) = {{:( e ^(x),, ",", if 0 le x le 1 ) , ( 2- e^(x - 1),, ",", if 1 lt x le2), ( x - e ,, ",", if 2 lt x le 3 ):}`
and ` " " g(x) = int _( 0) ^(x) f (t) dt `
`rArr " " g ' (x) = f(x) `
Put ` " " g ' (x) = 0 rArr x = 1 + log_e 2 and x = e`.
Also, ` " " g''(x) = {{:( e ^(x)",",, if 0 le x le 1), (- e ^( x -1 )",",, if 1 lt x le 2), ( 1",",, if 2 lt x le 3 ):}`
At `" " x = 1 +log _e 2`,
`g'' ( 1+ log_e 2) = - e ^( log_e 2) lt 0 , g(x)` has a local maximum.
Also, at ` x = e`,
`g '' (e) = 1 gt 0, g (x)` has a local, minima.
`because f(x)` is discontinuous at ` x = 1`, then we get local maxima at ` x = 1 ` and local minima at ` x = 2`.
Hence (a) and (b) are correct answers.
Promotional Banner

Similar Questions

Explore conceptually related problems

Consider two function y=f(x) and y=g(x) defined as f(x)={{:(ax^(2)+b,,0lexle1),(bx+2b,,1ltxle3),((a-1)x+2c-3,,3ltxle4):} and" "g(x)={{:(cx+d,,0lexle2),(ax+3-c,,2ltxlt3),(x^(2)+b+1,,3gexle4):} lim_(xrarr2) (f(x))/(|g(x)|+1) exists and f is differentiable at x = 1. The value of limit will be

Consider two function y=f(x) and y=g(x) defined as f(x)={{:(ax^(2)+b,,0lexle1),(bx+2b,,1ltxle3),((a-1)x+2c-3,,3ltxle4):} and" "g(x)={{:(cx+d,,0lexle2),(ax+3-c,,2ltxlt3),(x^(2)+b+1,,3gexle4):} Let f be differentiable at x = 1 and g(x) be continuous at x = 3. If the roots of the quadratic equation x^(2)+(a+b+c)alphax+49(k+kalpha)=0 are real distinct for all values of alpha then possible values of k will be

If the function f(x)={(x+1",",x le 1),(2x+1",",1lt x le 2):} and g(x)={(x^(2)",", -1 le x lt2),(x+2",",2le x le 3):} then the number of roots of the equation f(g(x))=2

Consider the functions f(x)={(x+1",",x le 1),(2x+1",",1lt x le 2):} and g(x)={(x^(2)",", -1 le x lt2),(x+2",",2le x le 3):} The domain of the function f(g(x)) is

Consider the functions f(x)={(x+1",",x le 1),(2x+1",",1lt x le 2):} and g(x)={(x^(2)",", -1 le x lt2),(x+2",",2le x le 3):} The range of the function f(g(x)) is

int_(1)^(4)f(x)dx where f(x)={:{(4x+3",",1lexle2),(3x+5",",2lexle4):}

Let f(x)=(e^(x))/(1+x^(2)) and g(x)=f'(x) , then

f(x)={(log_(e)x",",0lt x lt 1),(x^(2)-1 ",",x ge 1):} and g(x)={(x+1",",x lt 2),(x^(2)-1 ",",x ge 2):} . Then find g(f(x)).

Let f(x)={{:((x+1)^(3),-2ltxle-1),(x^(2//3)-1,-1ltxle1),(-(x-1)^(2),1ltxlt2):} . The total number of maxima and minima of f(x) is

f(x)={(x-1",",-1 le x le 0),(x^(2)",",0le x le 1):} and g(x)=sinx Consider the functions h_(1)(x)=f(|g(x)|) and h_(2)(x)=|f(g(x))|. Which of the following is not true about h_(2)(x) ?