Home
Class 12
MATHS
Consider the function f:(-oo,oo)vec(-oo,...

Consider the function `f:(-oo,oo)vec(-oo,oo)` defined by `f(x)=(x^2+a)/(x^2+a),a >0,` which of the following is not true? maximum value of `f` is not attained even though `f` is bounded. `f(x)` is increasing on `(0,oo)` and has minimum at `,=0` `f(x)` is decreasing on `(-oo,0)` and has minimum at `x=0.` `f(x)` is increasing on `(-oo,oo)` and has neither a local maximum nor a local minimum at `x=0.`

A

` ( 2 + a )^(2) f '' (1) + ( 2- a ) ^(2) f'' ( - 1 ) = 0 `

B

` ( 2 - a ) ^(2) f '' (1) - ( 2 + a ) ^(2) f '' ( - 1 ) = 0 `

C

` f ' (1) f' (-1) = - ( 2 + a ) ^(2)`

D

`f ' (1) f ' (-1) = - ( 2 + a ) ^(2)`

Text Solution

Verified by Experts

The correct Answer is:
a

`f (x) = ((x^(2) + ax + 1) - 2 ax ) /(x^(2) + ax + 1) =1- (2ax)/(x ^(2) + a x + 1)`
`f' (x) = - [((x ^(2) + ax + 1) * 2a - 2 ax ( 2x + a))/( ( x^(2) + ax + a ) ^(2)) ] `
`" " = [ (- 2ax ^(2) + 2a )/((x ^(2) + ax + a ) ^(2)) ] = 2a [ ((x^(2) - 1))/( (x ^(2) + ax + 1)^(2)) ] ` ... (i)
` f'' (x) = 2 a [ ((x^(2) + a x + 1) ^(2) ( 2x) - 2 ( x^(2) - 1) (x ^(2) + a x + 1) ( 2x + a))/( (x ^(2) + ax + 1) ^(4)) ]`
` " " = 2a [ (2x ( x^(2) + a x + 1 ) - 2 (x^(2) - 1) ( 2x + a))/( (x^(2) + ax + 1) ^(3)) ] ` ... (ii)
Now, ` f'' (1) = ( 4 a (a + 2)) /( (a + 2) ^(3)) = ( 4 a ) /( ( a + 2) ^(3)) `
and ` f '' (-1) = ( 4a (a - 2 ) )/( ( 2- a ) ^(3)) = (- 4a )/( (a -2) ^(2))`
`therefore ( 2+ a ) ^(2) f '' (1) + ( 2 -a ) ^(2) f'' ( - 1) = 4a - 4a = 0 `
Promotional Banner

Similar Questions

Explore conceptually related problems

The function f(x)=2|x|+|x+2|-||x+2|-2|x|| has a local minimum or a local maximum at x equal to:

Let f be the function f(x)=cosx-(1-(x^2)/2)dot Then f(x) is an increasing function in (0,oo) f(x) is a decreasing function in (-oo,oo) f(x) is an increasing function in (-oo,oo) f(x) is a decreasing function in (-oo,0)

Find the inverse of the function: f:(-oo,1] rarr [1/2,oo],w h e r ef(x)=2^(x(x-2))

Let f:[-oo,0]->[1,oo) be defined as f(x) = (1+sqrt(-x))-(sqrt(-x) -x) , then

The function f(x)=(ln(pi+x))/(ln(e+x)) is increasing in (0,oo) decreasing in (0,oo) increasing in (0,pi/e), decreasing in (pi/e ,oo) decreasing in (0,pi/e), increasing in (pi/e ,oo)

Let f(x)={(|x|,for 0 (a) a local maximum (b) no local maximum (c) a local minimum (d) no extremum

The function defined by f(x)=(x+2)e^(-x) is (a)decreasing for all x (b)decreasing in (-oo,-1) and increasing in (-1,oo) (c)increasing for all x (d)decreasing in (-1,oo) and increasing in (-oo,-1)

If f:[0,oo[vecR is the function defined by f(x)=(e^x^2-e^-x^2)/(e^x^2+e^-x^2), then check whether f(x) is injective or not.

Statement 1: The function f(x)=x^4-8x^3+22 x^2-24 x+21 is decreasing for every x in (-oo,1)uu(2,3) Statement 2: f(x) is increasing for x in (1,2)uu(3,oo) and has no point of inflection.

Let f(x)=xsqrt(4a x-x^2),(a >0)dot Then f(x) is a. increasing in (0,3a) decreasing in (3a, 4a) b. increasing in (a, 4a) decreasing in (5a ,oo) c. increasing in (0,4a) d. none of these