Home
Class 12
MATHS
Let (h , k) be a fixed point, where h >0...

Let `(h , k)` be a fixed point, where `h >0,k > 0.` A straight line passing through this point cuts the positive direction of the coordinate axes at the point `Pa n dQ` . Find the minimum area of triangle `O P Q ,O` being the origin.

Text Solution

Verified by Experts

The correct Answer is:
2hk

Let equation of any line through the poit `(h, k )` is
`" " y - k = m (x - h)" " ` … (i)
For this line to intersect the positive direction of two axes, `m = tan theta lt 0`, since the angle in anti - clockwise direction from X - axis becomes obtuse.
` (##41Y_SP_MATH_C10_E04_049_S01.png" width="80%">
The line (i) meets X - axis at ` P (h - (k )/(m), 0)` and Y - axis at `Q (0, k - mh)`.
Let ` A ` = area of `Delta OPQ = (1)/(2) O P * OQ`
` " " = (1)/(2) ( h - (k )/(m)) ( k - mh )`
`" " = (1)/(2) ( (m h - k )/( m ) ) (k - mh)= - (1)/( 2m ) (k - m h)^(2)`
` " " = - (1)/( 2 tan theta ) (k - h tan theta ) ^(2) " " [because m = tan theta ]`
` " " - (1 )/( 2 tan theta ) ( k^(2)+ h^(2) tan^(2) theta - 2hk tan theta )`
` " " = (1)/(2) ( 2kh - k ^(2) cot theta - h ^(2) tan theta )`
`rArr (d A) /( dtheta ) = (1)/(2) [ - k ^(2) (-cosec^(2) theta ) -h ^(2) sec^(2) theta ]`
`" " = (1)/(2) [ k ^(2) cosec ^(2) theta - h ^(2) sec ^(2) theta] `
To obtain minimum value of `A, (dA ) /( d theta ) = 0`
`rArr k ^(2) cosec ^(2) theta - h ^(2) sec ^(2) theta = 0`
`rArr " " ( k ^(2))/( sin ^(2) theta ) = (h^(2))/( cos^(2) theta) rArr ( k ^(2))/( h ^(2)) = tan ^(2) theta `
` rArr " " tan theta = pm (k )/(h)`
` because " " tan theta lt 0, k gt 0, h gt 0" " ` [ given ]
Therefore, `tan theta = - ( k )/(h) ` ( only possible value)
Now, ` (d^(2)A)/( dtheta^(2)) = (1)/(2) [- 2k ^(2) cosec ^(2) theta cot theta - 2h ^(2) sec ^(2) theta tan theta ]`
`" " = - [ k ^(2) (1 + cot ^(2) theta ) cot theta + h ^(2) ( 1+ tan ^(2) theta) tan theta ]`
`rArr " " [ (d^(2)A)/( d theta ^(2)) ] _(tan theta = - klh)= - [ k ^(2) ( 1+ (h^(2))/( k ^(2)) ) ((-h)/(k)) + h ^(2) ( + (k ^(2))/(h^(2))) ((-k )/( h))] `
`" " =[ k ^(2) (( k ^(2) + h ^(2))/(k ^(2)) ) ((h)/(k)) + h ^(2) ((h ^(2) + k ^(2))/( h ^(2))) ((h)/(k )) ]`
`" " = [ ((k ^(2) + h ^(2) ) h) /(k ) + (( h ^(2) + k ^(2)) (k ))/( h )]`
`" " = ( k ^(2) + h^(2)) [ ( h )/(k )+(k )/(h) ] gt 0 " " [ because h, k gt 0]`
Therefore, A is least when ` tan theta =-k //h`. Also, the least value of A is
`" "A = (1)/(2) [ 2 hk -k ^(2) ((- h)/(k )) - h ^(2) ((-k )/(h))] `
` = (1)/(2) [ 2 hk + kh + kh] = 2hk`
Promotional Banner

Similar Questions

Explore conceptually related problems

straight line L with negative slope passes through the point (9,4) cuts the positive coordinate axes at the point P and W As L. Varies, find the minimum value of |OP|+|OQ| , where O is origin .

Find the equation of a straight line passing through the point (-3,2) and cutting off equal intercepts on the cooredinate axes.

The straight line through a fixed point (2,3) intersects the coordinate axes at distinct point P and Q. If O is the origin and the rectangle OPRQ is completed then the locus of R is

If the point 3x+4y-24=0 intersects the X -axis at the point A and the Y -axis at the point B , then the incentre of the triangle OAB , where O is the origin, is

Find the straight line passing through the point of intersection of 2x+3y+5=0,5x-2y-16=0 , and through the point (-1,3)dot

Find the point where the straight line passes through (6,7,4)and(8,4,9) cut the xz and yz planes.

A straight line passes through a fixed point (6,8) : Find the locus of the foot of the perpendicular drawn to it from the origin O.