Home
Class 12
MATHS
The maximum value of the expression 1/(s...

The maximum value of the expression `1/(sin^2theta+3sinthetacostheta+5cos^2theta)`

Text Solution

Verified by Experts

The correct Answer is:
2

Let ` f ( theta ) = ( 1)/( sin ^(2) theta + 3 sin theta cos theta + 5 cos ^(2) theta ) `
Again let, ` g ( theta ) = sin ^(2) theta + 3 sin theta cos theta + 5 cos ^(2) theta `
` " " = ( 1 - cos 2 theta )/( 2 ) + 5(( 1 + cos 2 theta )/(2)) + (3)/(2) sin 2 theta `
`" " = 3 + 2 cos 2 theta + (3)/(2) sin 2 theta `
`therefore " " g ( theta ) _(min) = 3 - sqrt ( 4 + ( 9)/( 4)) `
`" " = 3 - ( 5)/(2) = (1)/(2)`
` therefore ` Maximum value of ` f ( theta ) = (1)/( 1//2) = 2 `
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the maximum and minimum values of cos^2theta-6sinthetacostheta+3sin^2theta+2.

(1+sin2theta+cos2theta)/(1+sin2theta-cos2theta)=?

The value of the determinant |[sintheta, costheta, sin2theta] , [sin(theta+(2pi)/3), cos(theta+(2pi)/3), sin(2theta+(4pi)/3)] , [sin(theta-(2pi)/3), cos(theta-(2pi)/3), sin(2theta-(4pi)/3)|

Prove that (sin theta+sin 2theta)/(1+cos theta+cos 2 theta)=tan theta

Solve the equations: sin 2theta - cos 2 theta - sin theta + cos theta = 0

The maximum value of 1+sin(pi/4+theta)+2cos(pi/4-theta) for real values of theta is

The value of (sin 3theta+sin 5theta+sin 7 theta+sin 9 theta)/(cos 3 theta+cos 5 theta+cos 7 theta+cos 9 theta)=……………

Show that [(costheta -cos3theta)(sin8theta+sin2theta)]/[(sin5theta -sintheta)(cos4theta-cos6theta)]=1 .

The value of 3(cos theta-sin theta)^(4)+6(sin theta+cos theta)^(2)+4 sin^(6) theta is where theta in ((pi)/(4),(pi)/(2)) (a) 13-4cos^(4) theta (b) 13-4cos^(6) theta (c) 13-4cos^(6) theta+ 2 sin^(4) theta cos^(2) theta (d) 13-4cos^(4) theta+ 2 sin^(4) theta cos^(2) theta