Home
Class 12
MATHS
The maximum value of the function f(x)=2...

The maximum value of the function `f(x)=2x^3-15 x^2+36 x-48` on the set `A={x|x^2|20lt=9x}` is______.

Text Solution

Verified by Experts

The correct Answer is:
7

Given, ` A = { x |x^(2) + 20 le 9x } = {x | x in [4, 5]}`
` (##41Y_SP_MATH_C10_E04_069_S01.png" width="80%">
Now, ` f ' (x)= 6(x ^(2) - 5x + 6 )`
Put ` f ' (x) = 0 rArr x = 2, 3 `
` " " f (2) = - 20 , f(3) = - 21, f( 4) = - 16 , f ( 5) = 7`
From graph, maximum value of ` f (x)` on set A is ` f ( 5) = 7`.
Promotional Banner

Similar Questions

Explore conceptually related problems

The maximum value of the function f(x)=2x^3-15 x^2+36 x-48 on the set A={x|x^ 2+20lt=9x} is______.

The maximum value of the function x^(2)e^(-2x),xgt0 is

The zero of the polynomial function f(x) = 9x^(2) - 16 are

Verify mean value theorem for the function f(x) = x^(3) - 5x^(2) _ 2x in [1, 3]

Find the absolute maximum and absolute minimum values of the function f(x)=2x^(3)+3x^(2)-12x on [-3, 2]

Find the absolute maximum and absolute minimum values of the function f(x) = 2x^(3) - 3x^(2) + 2 "in " -(1)/(2) le x le 4

Find the zero of the polynomial function f(x)=9x^(2)-36

Find the absolute maximum and minimum values of a function f given by f(x) = 2x^(3) – 15x^(2) + 36x +1 on the interval [1, 5].

Discuss the monotonicity of f(x) = 2x^(3) - 15x^(2) + 36x + 1