Home
Class 12
MATHS
Let 0 lt theta lt (pi)/(2). If the eccen...

Let `0 lt theta lt (pi)/(2)`. If the eccentricity of the hyperbola `(x^(2))/(cos^(2)theta)-(y^(2))/(sin^(2)theta)=1` is greater than 2, then the length of its latus rectum lies in the interval

A

`(1,(3)/(2)]`

B

`(3,oo)`

C

`((3)/(2),2]`

D

`(2, 3]`

Text Solution

Verified by Experts

For the hyperbola `(x^(2))/(a^(2))-(y^(2))/(b^(2))=1`,
`e=sqrt(1+(b^(2))/(a^(2)))`
` therefore ` For the given hyperbola,
`e=sqrt(1+(sin^(2) theta)/(cos^(2)theta)) gt 2`
` " " ( because a^(2)=cos^(2) theta and b^(2)=sin^(2)theta)`
`rArr 1+tan^(2)theta gt 4`
`rArr tan^(2) theta gt 3`
`rArr tan theta in (-oo, -sqrt(3)) cup (sqrt(3), oo)`
`[x^(2) gt 3 rArr |x| gt sqrt(3) rArr x in (-oo, -sqrt(3)) cup (sqrt(3) ,oo)]`
But `theta in (0,(pi)/(2)) rArr tan theta in (sqrt(3), oo)`
`rArr theta in ((pi)/(3),(pi)/(2))`
Now, length of latusrectum
`=(2b^(2))/(a)=2(sin^(2)theta)/(cos theta)=2 sin theta tan theta `
Since, both `sin theta and tan theta ` are increasing functions in `((pi)/(3),(pi)/(2))`
` therefore ` least value of latusrectum is
`=2"sin"(pi)/(3)*"tan"(pi)/(3)=2*(sqrt(3))/(2)*sqrt(3)=3 " " ("at " theta=(pi)/(3))`
and greatest value of latusrectum is `lt oo`
Hence, latusrectum length `in(3,oo)`
Promotional Banner

Similar Questions

Explore conceptually related problems

(1)/(sin^(2)theta)-(cos^(2)theta)/(sin^(2) theta) =___.

If eccentricity of the hyperbola (x^(2))/(cos^(2) theta)-(y^(2))/(sin^(2) theta)=1 is move than 2 when theta in (0,(pi)/2) . Find the possible values of length of latus rectum (a) (3,oo) (b) 1,3//2) (c) (2,3) (d) (-3,-2)

If e is the eccentricity of the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 and theta is the angle between the asymptotes, then cos.(theta)/(2) is equal to

If the latus rectum subtends a right angle at the center of the hyperbola (x^2)/(a^2)-(y^2)/(b^2)=1 , then find its eccentricity.

If (sin 3theta)/(cos 2theta)lt 0 , then theta lies in

Solve sin^(2) theta-cos theta=1/4, 0 le theta le 2pi .

Range of f(theta)=cos^2theta(cos^2theta+1)+2sin^2theta is

Solve sin^(2) theta-2 cos theta+1/4=0

If the foci of (x^2)/(a^2)-(y^2)/(b^2)=1 coincide with the foci of (x^2)/(25)+(y^2)/9=1 and the eccentricity of the hyperbola is 2, then a^2+b^2=16 there is no director circle to the hyperbola the center of the director circle is (0, 0). the length of latus rectum of the hyperbola is 12

Prove that cos theta +cos ((2pi)/(3)-theta)+cos ((2pi)/(3)+theta)=0