Home
Class 12
MATHS
If x(1),x(2)….x(10) are 10 observations,...

If `x_(1),x_(2)….x_(10)` are 10 observations, in which mean of `x_(1),x_(2),x_(3),x_(4)` is 11 while mean of `x_(5),x_(6)….x_(10)` is 16. also `x_(1)^(2)+x_(2)^(2)+….x_(10)^(2)=2000` then value of standard devition is

A

`2sqrt(2)`

B

2

C

4

D

`sqrt(2)`

Text Solution

Verified by Experts

The correct Answer is:
B

key idea Formula of standard deviation (sigma), for n observations
`=sqrt((Sigmax_(1)^(2))/(n)-((Sigmax_(1))/(n))^(2))`
Given 10 observations are `x_(1),x_(2),x_(3), … , x_(10)`
` therefore (x_(1)+x_(2)+x_(3)+x_(4))/(4) =11`
`rArr x_(1)+x_(2)+x_(3)+x_(4)=44 " ...(i)" `
`and (x_(5)+x_(6)+x_(7)+x_(8)+x_(9)+x_(10))/(6)=16`
` implies x_(5)+x_(6)+x_(7)+x_(8)+x_(9)+x_(10)=96 " ...(ii)" `
So, mean of given 10 observations `=(44+96)/(10)=(140)/(10)=14`
Since, the sum of squares of all the observations = 2000
`x_(1)^(2)+x_(2)^(2)+x_(3)^(2)+ ... +x_(10)^(2)=2000 " ...(iii)'' `
Now, `sigma^(2)=("standard deviation")^(2)=(Sigma x_(i)^(2))/(10)-((Sigma x_(i)^(2))/(10))^(2)`
`=(2000)/(10)-(14)^(2)=200-196=4`
So, `sigma =2`
Promotional Banner

Similar Questions

Explore conceptually related problems

Consider the quantities such that x_(1),x_(2),….x_(10),-1 lex_(1),x_(2)….,x_(10)le 1 and x_(1)^(3)+x_(2)^(3)+…+x_(10)^(3)=0 , then the maximum value of x_(1)+x_(2)+….+x_(10) is

If both the standard deviation and mean of data x_(1),x_(2),x_(3),……x_(50) are 16, then the mean of the data set ( x_(1)-4)^(2),(x_(2)-4)^(2),(x_(3)-4)^(2),….(x_(50)-4)^(2) is

The mean and variance of n observations x_(1),x_(2),x_(3),...x_(n) are 5 and 0 respectively. If sum_(i=1)^(n)x_(i)^(2)=400 , then the value of n is equal to

Given the sequence of numbers x_(1),x_(2),x_(3),x_(4),….,x_(2005) , (x_(1))/(x_(1)+1)=(x_(2))/(x_(2)+3)=(x_(3))/(x_(3)+5)=...=(x_(2005))/(x_(2005)+4009) , the nature of the sequence is

If the mean of 7+x,1+x,9+x,2+x,6+x is 5, then the mean of 13+x,12+x,8+x,5+x,2+x is

27x^(2) - 10x +1=0

If the variance of 1,2,3,4,5,….., x is 10, then the value of x is

Let the equation x^(5) + x^(3) + x^(2) + 2 = 0 has roots x_(1), x_(2), x_(3), x_(4) and x_(5), then find the value of (x_(1)^(2) - 1)(x_(2)^(2) - 1)(x_(3)^(2) - 1)(x_(4)^(2) - 1)(x_(5)^(2) - 1).

Consider any set of observations x_(1),x_(2),x_(3),..,x_(101) . It is given that x_(1) lt x_(2) lt x_(3) lt .. Lt x_(100) lt x_(101) , then the mean deviation of this set of observations about a point k is minimum when k equals

The coefficient of x^(6) in (2+2x)^(10) is