Home
Class 12
MATHS
If f(x)+2f((1)/(x))=3x,x ne 0, and S={x ...

If `f(x)+2f((1)/(x))=3x,x ne 0, and S={x in R: f(x)=f(-x)},` then S

A

is an empty set

B

contains exactly one elements

C

contains exactly two elements

D

contains more than two elements

Text Solution

Verified by Experts

The correct Answer is:
C

We have, `f(x)+2f((1)/(x))=3x, x ne 0 " …(i)" `
On replacing x by `(1)/(x)` in the above equation, we get
`f((1)/(x))+2f(x)=(3)/(x)`
`rArr 2f(x)+f((1)/(x))=(3)/(x) " ….(ii)" `
On multiplying Eq. (ii) by 2 and subtracting Eq. (i) from Eq. (ii), we get
`4f(x)+2f((1)/(x))=(6)/(x)`
`(underset (-)(f)(x)underset(-)(+)2f((1)/(x))underset(-)(=)3x)/(3f(x)=(6)/(x)-3x)`
`rArr f(x)=(2)/(x) -x`
Now, consider ` f(x)=f(-x)`
`rArr (2)/(x)-x=-(2)/(x)+x rArr (4)/(x)=2x`
`rArr 2x^(2)=4 rArr x^(2) =2`
`rArr x = pm sqrt(2)`
Hence, S contains exactly two elements.
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)+2f(1/x)=3x , x!=0, and S={x in R :f(x)=f(-x)} ; then S: (1) is an empty set. (2) contains exactly one element. (3) contains exactly two elements. (4) contains more than two elements

Consider the function f(x) satisfyig the identity f(x)+f((x-1)/x)=1+x, AA x in R-{0,1} and g(x)=2f(x)-x+1

Let f(x+(1)/(x) ) =x^2 +(1)/(x^2) , x ne 0, then f(x) =?

If a function 'f' satisfies the relation f(x)f^('')(x)-f(x)f^(')(x) -f^(')(x)^(2)=0 AA x in R and f(0)=1=f^(')(0) . Then find f(x) .

If f'(x) = 3x^2 - 4x + 5 and f(1) = 3 then find f(x).

If f(x)=log((1+x)/(1-x)),t h e n (a) f(x_1)f(x)=f(x_1+x_2) (b) f(x+2)-2f(x+1)+f(x)=0 (c) f(x)+f(x+1)=f(x^2+x) (d) f(x_1)+f(x_2)=f((x_1+x_2)/(1+x_1x_2))

For x in R-{0,1}, " let " f_(1)(x)=(1)/(x), f_(2)(x)=1-x and f_(3)(x)=(1)/(1-x) be three given functions. If a function, J(x) satisfies (f_(2) @J@f_(1))(x)=f_(3)(x), " then " J(x) is equal to

If f'(x)=3x^2 -4x+5" and "f(1)=3 , then find f(x) .

If f:RR-> RR is a differentiable function such that f(x) > 2f(x) for all x in RR and f(0)=1, then