Home
Class 12
MATHS
The Boolean Expression (p^^~ q)vvqvv(~ p...

The Boolean Expression `(p^^~ q)vvqvv(~ p^^q)` is equivalent to :

A

`~p wedge q`

B

`p wedge q`

C

`p vee q`

D

`p vee ~q`

Text Solution

Verified by Experts

The correct Answer is:
C

Consider, ` (p wedge ~q) vee q vee (~p wedge q)`
`-= [(p wedge ~q) vee q] vee (~q wedge q)`
`-= [( p vee q) wedge (~q vee q )] vee (~p wedge q)`
`-= [(p vee q ) wedge t] vee (~p wedge q)`
` -= (p vee q) vee (~p wedge q)`
`-= (p vee q vee ~ p) wedge (p vee q vee q)`
`-= (q vee t ) wedge (p vee q)`
`-= t wedge (p vee q) -= p vee q`
Promotional Banner

Similar Questions

Explore conceptually related problems

~(pvvq)vv(~p^^q) is equivalent to

p iff q is equivalent to :

The Boolean Expression ~(pvvq) vv(~pvvq) is equivalent to

If the Boolean expression (po+q)^^(~psquareq) is equivalent to p^^q where o+, square epsilon{^^,vv} then the ordered pair (o+, square) is

If the Boolean expression (p oplusq)wedge (~p Theta q) is equivalent to p wedge q , where oplus, Theta in {vee, wedge} , then the ordered pair (oplus, Theta) is

The boolean expression ~ (p rArr (~ q)) is equivalent to

~[(~p)^^q] is logically equivalent to

The expression ~(~p to q) is logically equivalent to

(p^^~q)^^(~p^^q) is

The logical statement [~(~pvvq)vv(p^^r)]^^(~q^^r) is equivalent to (a) (~p^^~q)^^r (b) ~p vv r (c) (p^^r)^^~q (d) (p^^~q)vvr