Home
Class 12
MATHS
In a triangle PQR " if " angle R =...

In a triangle `PQR " if " angle R = (pi)/(2)` if tan `(P/2)`and `tan (Q/2)` are the roots of ` ax^2 +bx +c=0 , a ne 0` then

A

`a+b=c`

B

`b+c=a`

C

`a+c=b`

D

`b=c`

Text Solution

Verified by Experts

The correct Answer is:
A

It is given that `tan(P//2) and tan (Q//2)` are the roots of the quardratic equations `ax^(2)+bx+c=0`
and `angle R=pi//2`
`:. tan (P//2)+tan(Q//2)=-b//a)`
and `tan(P//2)tan(Q//2)=c//a`
Since, `P+Q+R=180^(@)`
`rArr P+Q=90^(@)`
`rArr (P+Q)/(2)=45^(@)`
`rArr tan ((P+Q)/(2))=tan 45^(@)`
`rArr (tan (P//2)+tan (Q//2))/(1-tan(P//2)tan(Q//2))=1`
`rArr(-b//a)/(1-c//a)=1`
`rArr(-b//a)/((a-c)/(b))=1`
`rArr (-b)/(a-c)=1`
`rArr-b=a-c`
`rArr a+b=c`
Promotional Banner

Similar Questions

Explore conceptually related problems

IF tan 18^@ and tan 27^@ are the roots of ax^2 - bx +c=0 then

In a triangle A B C ,/_C=pi/2dot If tan(A/2) and tan(B/2) are the roots of the equation a x^2+b x+c=0,(a!=0), then the value of (a+b)/c (where a , b , c , are sides of opposite to angles A , B , C , respectively) is

Given tan A and tan B are the roots of x^(2)-ax+b=0 . The value of sin^(2)(A+B) is

Find the sum of the squares of the roots of ax^4+bx^3+cx^2+dx+e = 0 , a ne 0 .

If alpha and beta are roots of ax^(2) + bx+c=0 , a ne = then the wrong statement is .............

In a Delta ABC , If tan A/2, tan B/2, tan C/2 are in A.P. then cos A. cos B, cos C are in

In triangle ABC, prove that the maximum value of tan(A/2)tan(B/2)tan(C/2)i s R/(2s)

If alpha and beta are thr roots of the equation ax^(2) + bx + c = 0 then ( alpha + beta )^(2) is ……… .