Home
Class 12
MATHS
There exists a triangle A B C satisfying...

There exists a triangle `A B C` satisfying the conditions `bsinA=a ,A a ,A >pi/2` `bsinA > a ,A>a` `bsinA<>pi/2,b=a`

A

`bsin A=a,Alt(pi)/(2)`

B

`bsin Agta,Agt(pi)/(2)`

C

`bsin Agta,Alt(pi)/(2)`

D

`bsin Alta,Alt(pi)/(2),bgta`

Text Solution

Verified by Experts

The correct Answer is:
A, D

The sine formula is
`(a)/(sinA)=(b)/(sin B) rArr sin B=b sin A`
(a) `b sin A= a rAr a sin B=a`
`rArr B=(pi)/(2)`
Since, `angle Alt(pi)/(2)`, therefore the triangle is possible.
(b) and (c) b sin `Agta`
`rArr a sin B a rAr sin Bgt1`
(d) `b sin A lta`
`rArr a sin B lt a rArr sin B lt rArr angleB` exists.
Now, `bgta rArr BgtA`
Since `Alt(pi)/(2)`
`:.` The triangle is possible.
Hence, (a) and (d) are the correct answers.
Promotional Banner

Similar Questions

Explore conceptually related problems

If Aa n dB are acute positive angles satisfying the equations 3sin^2A+2sin^2B=1 and 3sin2A-2sin2B=0, then A+2B is equal to (a) pi (b) pi/2 (c) pi/4 (d) pi/6

The sides of triangle ABC satisfy the relations a + b - c= 2 and 2ab -c^(2) =4 , then the square of the area of triangle is ______

In triangle ABC, angle A is greater than angle B. If the measure of angles A and B satisfy the equation 3sinx-4sin^3x-k=0 . (A) pi/3 (B) pi/2 (C) (2pi)/3 (D) (5pi)/6

There exists a value of theta between 0 and 2pi that satisfies the equation sin^4theta-2sin^2theta-1=0

If in a triangle ABC , a=5,b=4 ,A = (pi)/( 2) +B then C

The smallest positive x satisfying the equation (log)_(cosx)sinx+(log)_(sinx)cosx=2 is pi/2 (b) pi/3 (c) pi/4 (d) pi/6

If the sines of the angles A and B of a triangle ABC satisfy the equation c^2x^2-c(a+b)x+a b=0 , then the triangle a)acute angled b)right angled c)obtuse angled d) sinA+cosA = ((a+b))/c

The variable x satisfying the equation |sinxcosx|+sqrt(2+tan^2 x+cot^2x)=sqrt(3) belongs to the interval (a) [0,pi/3] (b) (pi/3,pi/3) (c) [(3pi)/4,pi] (d) none-existent

The values of x_1 between 0 and 2pi , satisfying the equation cos3x+cos2x=sin(3x)/2+sinx/2 are pi/7 (b) (5pi)/7 (c) (9pi)/7 (d) (13pi)/7

The number of values of yin[-2pi,2pi] satisfying the equation |sin2x|+|cos2x|=|siny| is 3 (b) 4 (c) 5 (d) 6