Home
Class 12
MATHS
In triangle A B C ,A D is the altitude f...

In triangle `A B C ,A D` is the altitude from `Adot` If `b > c ,/_C=23^0,a n dA D=(a b c)/(b^2-c^2),` then `/_B=_____`

Text Solution

Verified by Experts

The correct Answer is:
`113^(@)`

In `DeltaADC, (AD)/(b)=sin 23^(@)`

` rArr AD=sin 23^(@)`
But `AD=(abc)/(a^(2)-c^(2)) " "` [ given]
`rArr (abc)/(b^(2)-c^(2))= b sin 23^(@)`
` rArr (a)/(b^(2)-c^(2))=(sin 23^(@))/(c)" ...(i)`
Again, in `DeltaABC`,
`(sinA)/(a)=(sin23^(@))/(c)`
`rArr (sinA)/(a)=(a)/(b^(-2)-c^(2))" "` [ from eq. (i)]
`rArr sin A=(a^(2))/(b^(2)-^(2))`
`rArr sin A=(k^(2) sin^(2) A)/(k^(2) sin ^(2)B-k^(2) sin^(2)C)`
`rArr sin A=(sin^(2)A)/(sin^(2)B-sin^(2)C)`
`rArr sin A=(sin^(2)A)/(sin (B+C) sin (B-C))`
`rArr sin A=(sin^(2)A)/(sin A*sin (B-C))`
`rArr sin (B-C)=1 " "[ :. sin A ne 0]`
`rArr sin (B-23^(@))=sin90^(@)`
`rArr B-23^(@) -90^(@)`
`B=113^(@)`
Promotional Banner

Similar Questions

Explore conceptually related problems

In acute angled triangle A B C ,A D is the altitude. Circle drawn with A D as its diameter cuts A Ba n dA Ca tPa n dQ , respectively. Length of P Q is equal to /(2R) (b) (a b c)/(4R^2) (c) 2RsinAsinBsinC (d) delta/R

In triangle A B C ,D is on A C such that A D=B C=D C ,/_D B C=2x ,a n d/_B A D=3x , all angles are in degrees, then find the value of xdot

In a triangle A B C , the altitude from A is not less than B C andthe altitude from B is not less than A C . The triangle is right angled (b) isosceles obtuse angled (d) equilateral

In a triangle A B CifB C=1a n dA C=2, then what is the maximum possible value of angle A ?

If an a triangle A B C , b=3ca n d C-B=90^0, then find the value of tanB

In triangle A B C ,b^2 sin2C+c^2sin2B=2bc where b=20 ,c=21 , then inradius= (a)4 (b) 6 (c) 8 (d) 9

In triangle A B C , Medians A D and C E are drawn. If A D=5,/_D A C=pi/8,a n d/_A C E=pi/4 , then the area of the triangle A B C is equal to (25)/9 (b) (25)/3 (c) (25)/(18) (d) (10)/3

In A B C ,/_A=90^0a n dA D is an altitude. Complete the relation (B D)/(D A)=(A B)/(()) .

In a scalene triangle A B C ,D is a point on the side A B such that C D^2=A D D B , sin s in A S in B=sin^2C/2 then prove that CD is internal bisector of /_Cdot

With usual notations, in triangle A B C ,acos(B-C)+bcos(C-A)+c"cos"(A-B) is equal to(a) (a b c)/R^2 (b) (a b c)/(4R^2) (c) (4a b c)/(R^2) (d) (a b c)/(2R^2)