Home
Class 12
MATHS
If in a DeltaABC, 2(cosA)/(a)+(cosB)/(...

If in a `DeltaABC,`
`2(cosA)/(a)+(cosB)/(b)+(2cosC)/(c)=(a)/(bc)+(b)/(ca)`
Then, the value of the `angleA` is ...... Degree

Text Solution

Verified by Experts

The correct Answer is:
`90^(@)`

Given , `(2 cosA)/(a)+(cosB)/(b)+(2cosC)/(c)=(a)/(bc)+(b)/(ca)" ".....(i)`
We know that `cos A=(b^(2)+c^(2)-a^(2))/(2bc)`
`cos B=(c^(2)+a^(2)-b^(2))/(2ac)`
`and cos C=(a^(2)+b^(2)-c^(2))/(2ab)`
On putting these values in Eq. (i) we get
`(2(b^(2)+c^(2)-a^(2)) )/(2abc)=(c^(2)+b^(2)-b^(2))/(2abc)+2(a^(2)+b^(2)-c^(2))/(2abc)=(a)/(bc)+(b)/(ca)`
`=(a^(2)+b^(2))/(abc)`
`rArr 3b^(2)+c^(2)+a^(2)=2a^(2)+2b^(2)`
`rArr b^(2)+c^(2)=a^(2)`
Hene, the angle A is `90^(@)`
Promotional Banner

Similar Questions

Explore conceptually related problems

If in a triangle A B C , (2cosA)/a+(cos B)/b+(2cosC)/c=a/(b c)+b/(c a) , then prove that the triangle is right angled.

In DeltaABC , if (sin A)/(c sin B) + (sin B)/(c) + (sin C)/(b) = (c)/(ab) + (b)/(ac) + (a)/(bc) , then the value of angle A is

In a triangle ABC, if (cosA)/a=(cosB)/b=(cosC)/c and the side a =2 , then area of triangle is

Show that cosA/a +cosB/b +cosC/c =(a^2 +b^2 +c^2 )/2abc

If in a triangle A B C ,(1+cosA)/a+(1+cosB)/b+(1_(cosC))/c =(k^2(1+cosA)(1+cosB)(1+cosC)/(a b c) , then k is equal to 1/(2sqrt(2)R) (b) 2R (c) 1/R (d) none of these

Prove that (b+c)cosA+(c+a)cosB+(a+b)cosC=2sdot

Show that (b+c)cosA +(c+a)cosB +(a+b)cosC =a+b+c

If in a Delta ABC, cosA+ cosB + cosc =3/2. Prove that DeltaABC is an equilateral triangle.

In DeltaABC , if AB = c is fixed, and cos A + cosB + 2 cos C = 2 then the locus of vertex C is