Home
Class 12
MATHS
A value of alpha such that int(al...

A value of `alpha` such that `int_(alpha)^(alpha+1) (dx)/((x+alpha)(x+alpha+1))="loge"((9)/(8))` is

A

`-2`

B

`(1)/(2)`

C

`-(1)/(2)`

D

2

Text Solution

Verified by Experts

The correct Answer is:
A

Let I `int_(alpha)^(alpha+1)(dx)/((x+a)(x+alpha1))`
`int_(alpha)^(alpha+1)((x+alpha+1)-(x+alpha))/((x+alpha)(x+alpha+1))`dx
`=int_(alpha)^(alpha+1)((1)/(x+alpha)-(1)/(x+alpha+1)) dx`
`=[log_(e)(x+alpha)-log_(e)(x+alpha+1)]_(alpha)^(alpha+1)`
`=[log_(e)((x+alpha)/(x+alpha+1))]_(alpha)^(alpha+1)`
`="log"_(e)(2alpha+1)/(2alpha+2)-"log"_(e)(2alpha)/(2alpha+1)`
`=log_(e)((2alpha+1)/(2alpha+2)xx(2alpha+1)/(2alpha))="log"_(e)((9)/(8))` (given)
`rArr((2alpha+1)^(2))/(4alpha(alpha+1))=(9)/(8)rArr8 [4alpha+1] = 36 (alpha^(2)+alpha)`
`rArr8alpha^(2)+8alpha+2=9alpha^(2)+9alpha`
`rArralpha^(2)+alpha-2=0`
` rArr(alpha+2)(alpha-1)=0`
`rArralpha=1,-2`
From the options we get `alpha -=2`
Promotional Banner

Similar Questions

Explore conceptually related problems

alpha beta x ^(alpha-1) e^(-beta x ^(alpha))

sin 3 alpha = 4 sin alpha sin(x + alpha) sin(x-alpha)

Prove that sin4 alpha=4tan alpha (1- tan^(2)alpha)/((1+tan^2 alpha)^2

Which of the following values of alpha satisfying the equation |(1+alpha)^2(1+2alpha)^2(1+3alpha)^2(2+alpha)^2(2+2alpha)^2(2+3alpha)^2(3+alpha)^2(3+2alpha)^2(3+3alpha)^2|=-648alpha? -4 b. 9 c. -9 d. 4

prove that : tan(alpha)+2 tan(2alpha) +4(tan4alpha)+8cot(8alpha) = cot(alpha)

The value of (sin(pi-alpha))/(sin alpha-cos alpha tan.(alpha)/(2))-cos alpha is

If alpha and beta are the roots of the equation 3x^(2) - 5x + 2 = 0 , find the value of (i) (alpha)/(beta) + (beta)/(alpha) (ii) alpha-beta (iii) (alpha^(2))/(beta) + (beta^(2))/(alpha)

Prove that sin 4alpha = 4 tan alpha (1 - tan^(2) alpha)/((1 + tan^(2) alpha)^(2))

If a variable takes the discrete values alpha-4 , alpha -(7)/(2), alpha-(5)/(2), alpha-2,alpha+(1)/(2), alpha-(1)/(2), alpha+5(alpha gt 0) , then the median is

The value of |alpha| for which the system of equation alphax+y+z=alpha-1 x+alphay+z=alpha-1 x+y+alphaz=alpha-1 has no solution , is "____"