Home
Class 12
MATHS
The integral int(pi//6)^(pi//3)sec^(2//...

The integral `int_(pi//6)^(pi//3)sec^(2//3)x " cosec"^(4//3)x` dx is equal to

A

`3^(5//6)-3^(2//3)`

B

`3^(7//6)-3^(5//6)`

C

`3^(5//3)-3^(1//3)`

D

`3^(4//3)-3^(1//3)`

Text Solution

Verified by Experts

The correct Answer is:
B

Let `I=int_(pi//6)^(pi//3)sec^(2//3)x " cosec"^(4//3) x dx `
`I=int_(pi//6)^(pi//3)(1)/(cos^(2//3)x sin^(4//3)c)dx `
` = int_(pi//6)^(pi//3)(sec^(2)x)/((tanx)^(4//3))dx`
[ multiplying and dividing the denominatior by `cos^(4//3)x]` Put , tan x = t , upper limitt , at `x=pi//3rArrt=sqrt(3)and` lower limit , at `x=pi//6 rArrt=1//sqrt(3)and sec^(2)x dx =` dt
So , `I=int_(1//sqrt(3))^(sqrt(3))(dt)/(t^(4//3))=[(t^(-1//3))/(-1//3)]_(1//sqrt(3))^(sqrt(3))`
`=-((1)/3^(1//6)-3^(1//6))`
`=3*3^(1//6)-3*3^(-1//6)`
`=3^(7//6)-3^(5//6)`
Promotional Banner

Similar Questions

Explore conceptually related problems

int x sinx sec^(3)x dx is equal to

The integral int sec^(2//3) "x cosec"^(4//3)"x dx" is equal to (here C is a constant of integration)

The integral int_(pi//6)^(pi//4)(dx)/(sin2x(tan^(5)x+cot^(5)x)) equals

Statement I: The value of the integral int_(pi//6)^(pi//3) (dx)/(1+sqrt(tanx)) is equal to (pi)/6 . Statement II: int_(a)^(b)f(x)dx=int_(a)^(b)f(a+b-x)dx

The value of int_(-pi)^( pi) sin^(3) x cos^(3) x dx is

int_(0)^((pi)/(2))(sec^(3)xdx)/(sec^(3)x+"cosec"^(3)x)

The value of int_(0)^((pi)/(6)) cos ^(3) 3x dx

Evaluate the definite integral int_((pi)/(6))^((pi)/(4))"cosec "xdx

Evaluate int_(0)^(pi//6) cos^(7) 3x dx

The integral int_(0)^(pi)sqrt(1+4"sin"^(2)x/2-4"sin"x/2)dx equals