Home
Class 12
MATHS
The value of int(0)^(2pi)[sin2x(1+cos3x)...

The value of `int_(0)^(2pi)[sin2x(1+cos3x)]` dx, where [t] denotes

Text Solution

Verified by Experts

The correct Answer is:
A

Given integral
`I=int_(0)^(2pi)[sin2x*(1+cos3x)]dx`
`=int_(0)^(pi)[sin2x*(1+cos3x)] dx`
`+int_(pi)^(2pi)[sin2x*(1+cos3x)]dx`
`=I_(1)_I_(2)("let")` . . . (i)
Now , `I_(2)=int_(pi)^(2pi)[sin2x*(1+cos3x)]dx`
Let `2pi-x=t`, upper limit t = 0 and lower limit ` t= pi` and `dx =- dt`
So `I_(2)=-int_(pi)^(0)[-sin2x*(1+cos3x)] dx`
`=int_(pi)^(0)[-sin2x*(1+cos3x)] dx` . . . (ii)
`:.I=int_(0)^(pi)[sin2x(1+cos3x)]dx`
`+int_(0)^(pi)[sin2x*(1+cos3x)] dx `
[ from Eqs . (i) and (ii)]
`=int_(0)^(pi)(-1)dx][:'[x]+[-x]=-1, !in ` Integer]
`=- pi`
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of int_(0)^(pi) sin^(4) x dx is

The value of int_(0)^((pi)/(6)) cos ^(3) 3x dx

The value of int_0^(2pi)[2 sin x] dx , where [.] represents the greatest integral functions, is

Evaluate int_(0)^(pi)(xsinx)/(1+cos^(2)x)dx

The value of int_(0)^(1) (sin^(-1) x ) ^(2) dx is

The value of int_(-pi//2)^(pi//2)dx/([x]+[sinx]+4) where [t] denotes the greatest integer less or equal to t, is

The value of int_(-pi)^( pi) sin^(3) x cos^(3) x dx is

The value of int_(0)^((pi)/(4))sqrt(1-sin2x)dx is