Home
Class 12
MATHS
If f(x)=(2-xcosx)/(2+xcosx)andg(x)= "log...

If `f(x)=(2-xcosx)/(2+xcosx)andg(x)= "log"_(e)x, (xgt0)` then the value of the integral `int_(-pi//4)^(pi//4)g(f(x))` dx is

A

`"log"_(e)3`

B

`"log"_(e)e`

C

`"log"_(e)2`

D

`"log"_(e)1`

Text Solution

Verified by Experts

The correct Answer is:
D

The given functions are
`g(x)=log_(e)x,x gt0 and f (x) = (2-x cosx)/(2+x cos x)`
Let `I=int_(-pi//4)^(pi//4)f(f(x)) dx`
Then , I ` int_(-pi//4)^(pi//4)log _(e)((2-x cosx)/(2+ xcosx))dx ` . . . (i) Now , by using the property
`int_(a)^(b)f(x)dx=int_(a)^(b)f(a+b-x) dx` , we get
`I=int_(-pi//4)^(pi//4)[ log_(e)((2+cosx)/(2-cos x))]`dx
On adding Eqs . (i) and (ii) , we get
`2I=int_(-pi//4)^(pi//4)[log_(e)((2-xcos x)/(2+ x cos x))+ log_9e((2+ cos x)/(2 x cosx))] dx`
`=int_(-pi//4)^(pi//4)[ log_(e) ((2- xcos x)/(2+ x cos x )xx(2+x cosx)/(2-x cosx))`dx
`[:' log _(e) A+log_(e)B= log_(e)AB]`
`rarr2I=int_(-pi//4)^(pi//4)log_(e)(1) dx =0 rArr I=0= log_(e)(1)`
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x) is continuous and int_(0)^(9)f(x)dx=4 , then the value of the integral int_(0)^(3)x.f(x^(2))dx is

The value of the integral int_0^(2a)[(f(x))/({f(x)+f(2a-x)})]dx "is equal to "a

Evaluate the definite integral int_(0)^((pi)/(4))(2sec^(2)x+x^(3)+2)dx

If int_0^x(f(t))dt=x+int_x^1(t^2.f(t))dt+pi/4-1 , then the value of the integral int_-1^1(f(x))dx is equal to

"If " f(x)=int(dx)/(x^(1//3)+2) " and "f(0)=12log_(e)2, " then the value of " f(-1) " is"-.

L e tf(x)=x^3-(3x^2)/2+x+1/4 Then the value of (int_(1/4)^(3/4)f(f(x))dx)^(-1) is____

The value of int_((-pi)/(2))^((pi)/(2))(x^(3)+xcosx+tan^(5)x+1)dx is

If f'(x)=f(x)+int_(0)^(1)f(x)dx ,given f(0)=1 , then the value of f(log_(e)2) is

Let f: Rveca n dg: RvecR be continuous function. Then the value of the integral int_(-pi/2)^(pi/2)[f(x)+f(-x)][g(x)-g(-x)]dxi s pi (b) 1 (c) -1 (d) 0

Evaluate the definite integrals int_(0)^(pi/4)(sinxcosx)/(cos^(4)x+sin^(4)x)dx