Home
Class 12
MATHS
The integral underset1overseteint{(x/e)^...

The integral `underset1overseteint{(x/e)^(2x)-(e/x)^x}log_exdx` is equal to

A

`(3)/(2)-e-(1)/(2e^(2))`

B

`-(1)/(2)+(1)/(e)-(1)/(2e^(2))`

C

`(1)/(2)-e-(1)/(e^(2))`

D

`(3)/(2)-(1)/(e)-(1)/(2e^(2))`

Text Solution

Verified by Experts

The correct Answer is:
A

Let `I=int_(1)^(e){((x)/(e))^(2x)-((e)/x)^(x)} "log"_(e) x dx`
Now , put `((x)/(e))^(x)=t rArrx log _(e)((x)/(e))= log t`
`rArrx (log_(e)x-log_(e))=logt`
`rArr[x((1)/(x))+(log_(e)x-log_(e)e)]dx=(1)/(t)dt`
`rArr(1+log_(e)x-1)dx=(1)/(t)dtrArr(log_(e)x)dx=(1)/(t)dt`
Also , upper limit `x=erArrt=1` and lower limit `x=1rArrt=(1)/(e)`
`I=int_(1//e)^(1)(t^(2)-(1)/(t))*(1)/(t)dtrArrI=int_(1//e)^(1)(t-t^(2)) dt`
`I=[((t^(2))/(2)+(1)/(t))]_(1/(e))^(1)={((1)/(2)+1)-((1)/(2e^(2))+e)}=(3)/(2)-e-(1)/(2e^(2))`
Promotional Banner

Similar Questions

Explore conceptually related problems

The integral int_(1)^(e){(x/e)^(2x)-(e/x)^x}log_exdx is equal to

The integral int(1+x-1/x)e^(x+1/x)dx is equal to

The value of the integral overset(1)underset(0)int e^(x^(2))dx lies in the integral

If I=int e^(-x) log(e^x+1) dx, then equal

Integrate: int x^2 e^(2x) dx

integrate (e^(2x))/(e^(2x)+1)

Evaluate int(1+x^(2)log_(e)x)/(x+x^(2)log_(e)x)dx

The integral intcos(log_(e)x)dx is equal to: (where C is a constant of integration)

Column I, a) int(e^(2x)-1)/(e^(2x)+1)dx is equal to b) int1/((e^x+e^(-x))^2)dx is equal to c) int(e^(-x))/(1+e^x)dx is equal to d) int1/(sqrt(1-e^(2x)))dx is equal to COLUMN II p) x-log[1+sqrt(1-e^(2x)]+c q) log(e^x+1)-x-e^(-x)+c r) log(e^(2x)+1)-x+c s) -1/(2(e^(2x)+1))+c

Integrate the functions (e^(2x)-1)/(e^(2x)+1)