Home
Class 12
MATHS
The integral int(pi//6)^(pi//4)dx/(sin2x...

The integral `int_(pi//6)^(pi//4)dx/(sin2x(tan^5x+cot^5x))`equal

A

`(1)/(5)((pi)/(4)-tan^(-1)((1)/(3sqrt(3))))`

B

`(1)/(20)tan^(-1)((1)/(9sqrt(3)))`

C

`(1)/(10)((pi)/(4)-tan^(-1)((1)/(9sqrt(3))))`

D

`(pi)/(40)`

Text Solution

Verified by Experts

The correct Answer is:
C

Let `I=int_(pi//6)^(pi//4)(dx)/(sin2x(tan^(5)x+cot^(5)x))`
`=int_(pi//6)^(pi//4)((1+tan^(2)x)tan^(5)x)/(2 tan x (tan ^(10)x+1))`[`":'sin 2x = (2 tanx)/(1+tan^(2)x)]`
`=(1)/(2)int_(pi//6)^(pi//4)(tan^(4)xsec^(2)x)/((tan ^(10x+1)))dx`
Put `tan^(5)x=t [:'sec^(2)x=1+tan^(2)x]`
`rArr5 tan ^(4)x sec^(2)x dx = dt`
`{:(x,(pi)/(6),(pi)/(4)),(t,((1)/sqrt(3))^(5),1):}`
`:. I=(1)/(2)*(1)/(5)int_((1//sqrt(3))^(5))^(1)(dt)/(t^(2)+1)=(1)/(10)(tan^(-1)(t))_((1sqrt(3))^(5))^(1)`
`=(1)/(10)((pi)/(4)-tan^(-1)((1)/(9sqrt(3))))`
`=(1)/(10)((pi)/(4)-tan^(-1)((1)/(9 sqrt(3))))`
Promotional Banner

Similar Questions

Explore conceptually related problems

The integral int_(pi//6)^(pi//4)(dx)/(sin2x(tan^(5)x+cot^(5)x)) equals

Statement I: The value of the integral int_(pi//6)^(pi//3) (dx)/(1+sqrt(tanx)) is equal to (pi)/6 . Statement II: int_(a)^(b)f(x)dx=int_(a)^(b)f(a+b-x)dx

By using the properties of definite integrals, evaluate the integrals int_(0)^(pi/2)(cos^(5)xdx)/(sin^(5)x+cos^(5)x)

The integral int_(pi//6)^(pi//3)sec^(2//3)x " cosec"^(4//3)x dx is equal to

The value of the integral int_(-(3pi)/4)^((5pi)/4)((sinx+cosx)/(e^(x-pi/4)+1))dx (A) 0 (B) 1 (C) 2 (D) none of these

Evaluate: int_(0)^(pi/2)(dx)/(4sin^(2)x+5cos^(2)x)

The value of int_(-pi//2)^(pi//2)(sin^(2)x)/(1+2^(x))dx is

Evaluate the definite integrals int_((pi)/(6))^((pi)/(3))(sinx+cosx)/(sqrt(sin2x))dx .

The integral int_(0)^(pi)sqrt(1+4"sin"^(2)x/2-4"sin"x/2)dx equals